Divyasreepat
commited on
Update README.md with new model card content
Browse files
README.md
CHANGED
@@ -1,18 +1,107 @@
|
|
1 |
---
|
2 |
library_name: keras-hub
|
3 |
---
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
library_name: keras-hub
|
3 |
---
|
4 |
+
### Model Overview
|
5 |
+
⚠️ Whisper is currently only available via the `keras-hub-nightly` package. Use `pip install keras-hub-nightly` to try this model.
|
6 |
+
|
7 |
+
A Whisper encoder-decoder network for speech.
|
8 |
+
|
9 |
+
This class implements a Transformer-based encoder-decoder model as
|
10 |
+
described in
|
11 |
+
["Robust Speech Recognition via Large-Scale Weak Supervision"](https://arxiv.org/abs/2212.04356).
|
12 |
+
It includes the embedding lookups and transformer layers, but not the head
|
13 |
+
for predicting the next token.
|
14 |
+
|
15 |
+
The default constructor gives a fully customizable, randomly initialized Whisper
|
16 |
+
model with any number of layers, heads, and embedding dimensions. To load
|
17 |
+
preset architectures and weights, use the `from_preset()` constructor.
|
18 |
+
|
19 |
+
Disclaimer: Pre-trained models are provided on an "as is" basis, without
|
20 |
+
warranties or conditions of any kind. The underlying model is provided by a
|
21 |
+
third party and subject to a separate license, available
|
22 |
+
[here](https://github.com/openai/whisper).
|
23 |
+
|
24 |
+
|
25 |
+
__Arguments__
|
26 |
+
|
27 |
+
|
28 |
+
- __vocabulary_size__: int. The size of the token vocabulary.
|
29 |
+
- __num_layers__: int. The number of transformer encoder layers and
|
30 |
+
transformer decoder layers.
|
31 |
+
- __num_heads__: int. The number of attention heads for each transformer.
|
32 |
+
The hidden size must be divisible by the number of attention heads.
|
33 |
+
- __hidden_dim__: int. The size of the transformer encoding and pooler layers.
|
34 |
+
- __intermediate_dim__: int. The output dimension of the first Dense layer in
|
35 |
+
a two-layer feedforward network for each transformer.
|
36 |
+
- __num_mels__: int. The number of mel-frequency filters. Defaults to `80`.
|
37 |
+
- __dropout__: float. Dropout probability for the Transformer encoder.
|
38 |
+
- __max_encoder_sequence_length__: int. The maximum sequence length that the
|
39 |
+
audio encoder can consume. Since the second convolutional layer in
|
40 |
+
the encoder reduces the sequence length by half (stride of 2), we
|
41 |
+
use `max_encoder_sequence_length // 2` as the sequence length for the
|
42 |
+
positional embedding layer.
|
43 |
+
- __max_decoder_sequence_length__: int. The maximum sequence length that the
|
44 |
+
text decoder can consume.
|
45 |
+
|
46 |
+
### Example Usage
|
47 |
+
```python
|
48 |
+
import keras_hub
|
49 |
+
import keras_core as keras
|
50 |
+
import numpy as np
|
51 |
+
```
|
52 |
+
|
53 |
+
|
54 |
+
|
55 |
+
```python
|
56 |
+
input_data = {
|
57 |
+
"encoder_features": np.ones(shape=(1, 12, 80), dtype="int32"),
|
58 |
+
"decoder_token_ids": np.ones(shape=(1, 12), dtype="int32"),
|
59 |
+
"decoder_padding_mask": np.array(
|
60 |
+
[[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]]
|
61 |
+
),
|
62 |
+
}
|
63 |
+
|
64 |
+
# Randomly initialized Whisper encoder-decoder model with a custom config.
|
65 |
+
model = keras_hub.models.WhisperBackbone(
|
66 |
+
vocabulary_size=51864,
|
67 |
+
num_layers=4,
|
68 |
+
num_heads=4,
|
69 |
+
hidden_dim=256,
|
70 |
+
intermediate_dim=512,
|
71 |
+
max_encoder_sequence_length=128,
|
72 |
+
max_decoder_sequence_length=128,
|
73 |
+
)
|
74 |
+
model(input_data)
|
75 |
+
```
|
76 |
+
|
77 |
+
## Example Usage with Hugging Face URI
|
78 |
+
|
79 |
+
```python
|
80 |
+
import keras_hub
|
81 |
+
import keras_core as keras
|
82 |
+
import numpy as np
|
83 |
+
```
|
84 |
+
|
85 |
+
|
86 |
+
|
87 |
+
```python
|
88 |
+
input_data = {
|
89 |
+
"encoder_features": np.ones(shape=(1, 12, 80), dtype="int32"),
|
90 |
+
"decoder_token_ids": np.ones(shape=(1, 12), dtype="int32"),
|
91 |
+
"decoder_padding_mask": np.array(
|
92 |
+
[[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]]
|
93 |
+
),
|
94 |
+
}
|
95 |
+
|
96 |
+
# Randomly initialized Whisper encoder-decoder model with a custom config.
|
97 |
+
model = keras_hub.models.WhisperBackbone(
|
98 |
+
vocabulary_size=51864,
|
99 |
+
num_layers=4,
|
100 |
+
num_heads=4,
|
101 |
+
hidden_dim=256,
|
102 |
+
intermediate_dim=512,
|
103 |
+
max_encoder_sequence_length=128,
|
104 |
+
max_decoder_sequence_length=128,
|
105 |
+
)
|
106 |
+
model(input_data)
|
107 |
+
```
|