keremberke commited on
Commit
e4154e1
1 Parent(s): d2bb12a

add ultralytics model card

Browse files
Files changed (1) hide show
  1. README.md +76 -0
README.md ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+ tags:
4
+ - ultralyticsplus
5
+ - yolov8
6
+ - ultralytics
7
+ - yolo
8
+ - vision
9
+ - object-detection
10
+ - pytorch
11
+ library_name: ultralytics
12
+ library_version: 8.0.6
13
+ inference: false
14
+
15
+ datasets:
16
+ - keremberke/forklift-object-detection
17
+
18
+ model-index:
19
+ - name: keremberke/yolov8n-forklift-detection
20
+ results:
21
+ - task:
22
+ type: object-detection
23
+
24
+ dataset:
25
+ type: keremberke/forklift-object-detection
26
+ name: forklift-object-detection
27
+ split: validation
28
+
29
+ metrics:
30
+ - type: precision # since [email protected] is not available on hf.co/metrics
31
+ value: 0.57081 # min: 0.0 - max: 1.0
32
+ name: [email protected](box)
33
+ ---
34
+
35
+ <div align="center">
36
+ <img width="640" alt="keremberke/yolov8n-forklift-detection" src="https://huggingface.co/keremberke/yolov8n-forklift-detection/resolve/main/thumbnail.jpg">
37
+ </div>
38
+
39
+ ### Supported Labels
40
+
41
+ ```
42
+ ['forklift', 'person']
43
+ ```
44
+
45
+ ### How to use
46
+
47
+ - Install [ultralytics](https://github.com/ultralytics/ultralytics) and [ultralyticsplus](https://github.com/fcakyon/ultralyticsplus):
48
+
49
+ ```bash
50
+ pip install -U ultralytics ultralyticsplus
51
+ ```
52
+
53
+ - Load model and perform prediction:
54
+
55
+ ```python
56
+ from ultralyticsplus import YOLO, render_model_output
57
+
58
+ # load model
59
+ model = YOLO('keremberke/yolov8n-forklift-detection')
60
+
61
+ # set model parameters
62
+ model.overrides['conf'] = 0.25 # NMS confidence threshold
63
+ model.overrides['iou'] = 0.45 # NMS IoU threshold
64
+ model.overrides['agnostic_nms'] = False # NMS class-agnostic
65
+ model.overrides['max_det'] = 1000 # maximum number of detections per image
66
+
67
+ # set image
68
+ image = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'
69
+
70
+ # perform inference
71
+ for result in model.predict(image, return_outputs=True):
72
+ print(result["det"]) # [[x1, y1, x2, y2, conf, class]]
73
+ render = render_model_output(model=model, image=image, model_output=result)
74
+ render.show()
75
+ ```
76
+