--- tags: - ultralyticsplus - yolov8 - ultralytics - yolo - vision - object-detection - pytorch library_name: ultralytics library_version: 8.0.6 inference: false datasets: - keremberke/forklift-object-detection model-index: - name: keremberke/yolov8n-forklift-detection results: - task: type: object-detection dataset: type: keremberke/forklift-object-detection name: forklift-object-detection split: validation metrics: - type: precision # since mAP@0.5 is not available on hf.co/metrics value: 0.57081 # min: 0.0 - max: 1.0 name: mAP@0.5(box) ---
keremberke/yolov8n-forklift-detection
### Supported Labels ``` ['forklift', 'person'] ``` ### How to use - Install [ultralytics](https://github.com/ultralytics/ultralytics) and [ultralyticsplus](https://github.com/fcakyon/ultralyticsplus): ```bash pip install -U ultralytics ultralyticsplus ``` - Load model and perform prediction: ```python from ultralyticsplus import YOLO, render_model_output # load model model = YOLO('keremberke/yolov8n-forklift-detection') # set model parameters model.overrides['conf'] = 0.25 # NMS confidence threshold model.overrides['iou'] = 0.45 # NMS IoU threshold model.overrides['agnostic_nms'] = False # NMS class-agnostic model.overrides['max_det'] = 1000 # maximum number of detections per image # set image image = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg' # perform inference for result in model.predict(image, return_outputs=True): print(result["det"]) # [[x1, y1, x2, y2, conf, class]] render = render_model_output(model=model, image=image, model_output=result) render.show() ```