keremberke commited on
Commit
9e938d3
1 Parent(s): 38f989b

add ultralytics model card

Browse files
Files changed (1) hide show
  1. README.md +14 -11
README.md CHANGED
@@ -8,8 +8,9 @@ tags:
8
  - vision
9
  - image-segmentation
10
  - pytorch
 
11
  library_name: ultralytics
12
- library_version: 8.0.6
13
  inference: false
14
 
15
  datasets:
@@ -28,10 +29,10 @@ model-index:
28
 
29
  metrics:
30
  - type: precision # since [email protected] is not available on hf.co/metrics
31
- value: 0.00706 # min: 0.0 - max: 1.0
32
  name: [email protected](box)
33
  - type: precision # since [email protected] is not available on hf.co/metrics
34
- value: 0.00456 # min: 0.0 - max: 1.0
35
  name: [email protected](mask)
36
  ---
37
 
@@ -47,16 +48,16 @@ model-index:
47
 
48
  ### How to use
49
 
50
- - Install [ultralytics](https://github.com/ultralytics/ultralytics) and [ultralyticsplus](https://github.com/fcakyon/ultralyticsplus):
51
 
52
  ```bash
53
- pip install -U ultralytics ultralyticsplus
54
  ```
55
 
56
  - Load model and perform prediction:
57
 
58
  ```python
59
- from ultralyticsplus import YOLO, render_model_output
60
 
61
  # load model
62
  model = YOLO('keremberke/yolov8n-pothole-segmentation')
@@ -71,10 +72,12 @@ model.overrides['max_det'] = 1000 # maximum number of detections per image
71
  image = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'
72
 
73
  # perform inference
74
- for result in model.predict(image, return_outputs=True):
75
- print(result["det"]) # [[x1, y1, x2, y2, conf, class]]
76
- print(result["segment"]) # [segmentation mask]
77
- render = render_model_output(model=model, image=image, model_output=result)
78
- render.show()
 
 
79
  ```
80
 
 
8
  - vision
9
  - image-segmentation
10
  - pytorch
11
+ - awesome-yolov8-models
12
  library_name: ultralytics
13
+ library_version: 8.0.21
14
  inference: false
15
 
16
  datasets:
 
29
 
30
  metrics:
31
  - type: precision # since [email protected] is not available on hf.co/metrics
32
+ value: 0.995 # min: 0.0 - max: 1.0
33
  name: [email protected](box)
34
  - type: precision # since [email protected] is not available on hf.co/metrics
35
+ value: 0.995 # min: 0.0 - max: 1.0
36
  name: [email protected](mask)
37
  ---
38
 
 
48
 
49
  ### How to use
50
 
51
+ - Install [ultralyticsplus](https://github.com/fcakyon/ultralyticsplus):
52
 
53
  ```bash
54
+ pip install ultralyticsplus==0.0.23 ultralytics==8.0.21
55
  ```
56
 
57
  - Load model and perform prediction:
58
 
59
  ```python
60
+ from ultralyticsplus import YOLO, render_result
61
 
62
  # load model
63
  model = YOLO('keremberke/yolov8n-pothole-segmentation')
 
72
  image = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'
73
 
74
  # perform inference
75
+ results = model.predict(image)
76
+
77
+ # observe results
78
+ print(results[0].boxes)
79
+ print(results[0].masks)
80
+ render = render_result(model=model, image=image, result=results[0])
81
+ render.show()
82
  ```
83