danieldk's picture
danieldk HF staff
Rename to paged-attention
3dcba92
raw
history blame
3.81 kB
from typing import List, Optional
import torch
from ._ops import ops
# page attention ops
def paged_attention_v1(
out: torch.Tensor,
query: torch.Tensor,
key_cache: torch.Tensor,
value_cache: torch.Tensor,
num_kv_heads: int,
scale: float,
block_tables: torch.Tensor,
seq_lens: torch.Tensor,
block_size: int,
max_seq_len: int,
alibi_slopes: Optional[torch.Tensor],
kv_cache_dtype: str,
k_scale: float,
v_scale: float,
tp_rank: int = 0,
blocksparse_local_blocks: int = 0,
blocksparse_vert_stride: int = 0,
blocksparse_block_size: int = 64,
blocksparse_head_sliding_step: int = 0,
) -> None:
ops.paged_attention_v1(
out,
query,
key_cache,
value_cache,
num_kv_heads,
scale,
block_tables,
seq_lens,
block_size,
max_seq_len,
alibi_slopes,
kv_cache_dtype,
k_scale,
v_scale,
tp_rank,
blocksparse_local_blocks,
blocksparse_vert_stride,
blocksparse_block_size,
blocksparse_head_sliding_step,
)
def paged_attention_v2(
out: torch.Tensor,
exp_sum: torch.Tensor,
max_logits: torch.Tensor,
tmp_out: torch.Tensor,
query: torch.Tensor,
key_cache: torch.Tensor,
value_cache: torch.Tensor,
num_kv_heads: int,
scale: float,
block_tables: torch.Tensor,
seq_lens: torch.Tensor,
block_size: int,
max_seq_len: int,
alibi_slopes: Optional[torch.Tensor],
kv_cache_dtype: str,
k_scale: float,
v_scale: float,
tp_rank: int = 0,
blocksparse_local_blocks: int = 0,
blocksparse_vert_stride: int = 0,
blocksparse_block_size: int = 64,
blocksparse_head_sliding_step: int = 0,
) -> None:
ops.paged_attention_v2(
out,
exp_sum,
max_logits,
tmp_out,
query,
key_cache,
value_cache,
num_kv_heads,
scale,
block_tables,
seq_lens,
block_size,
max_seq_len,
alibi_slopes,
kv_cache_dtype,
k_scale,
v_scale,
tp_rank,
blocksparse_local_blocks,
blocksparse_vert_stride,
blocksparse_block_size,
blocksparse_head_sliding_step,
)
def reshape_and_cache(
key: torch.Tensor,
value: torch.Tensor,
key_cache: torch.Tensor,
value_cache: torch.Tensor,
slot_mapping: torch.Tensor,
kv_cache_dtype: str,
k_scale: float,
v_scale: float,
) -> None:
ops.reshape_and_cache(
key,
value,
key_cache,
value_cache,
slot_mapping,
kv_cache_dtype,
k_scale,
v_scale,
)
def reshape_and_cache_flash(
key: torch.Tensor,
value: torch.Tensor,
key_cache: torch.Tensor,
value_cache: torch.Tensor,
slot_mapping: torch.Tensor,
kv_cache_dtype: str,
k_scale: torch.Tensor,
v_scale: torch.Tensor,
) -> None:
ops.reshape_and_cache_flash(
key,
value,
key_cache,
value_cache,
slot_mapping,
kv_cache_dtype,
k_scale,
v_scale,
)
def copy_blocks(
key_caches: List[torch.Tensor],
value_caches: List[torch.Tensor],
block_mapping: torch.Tensor,
) -> None:
ops.copy_blocks(key_caches, value_caches, block_mapping)
def swap_blocks(
src: torch.Tensor, dst: torch.Tensor, block_mapping: torch.Tensor
) -> None:
ops.swap_blocks(src, dst, block_mapping)
def convert_fp8(
output: torch.Tensor, input: torch.Tensor, scale: float = 1.0, kv_dtype: str = "fp8"
) -> None:
ops.convert_fp8(output, input, scale, kv_dtype)
__all__ = [
"convert_fp8",
"paged_attention_v1",
"paged_attention_v2",
"reshape_and_cache",
"copy_blocks",
]