File size: 2,265 Bytes
165b25c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
from typing import Optional
import torch
try:
from ._ops import ops
except ImportError as e:
# Fallback for local development.
try:
import _quantization
ops = torch.ops._quantization
except ImportError:
raise e
def cutlass_scaled_mm_supports_fp8(cuda_device_capability: int) -> bool:
return ops.cutlass_scaled_mm_supports_fp8(cuda_device_capability)
def cutlass_scaled_mm(
a: torch.Tensor,
b: torch.Tensor,
scale_a: torch.Tensor,
scale_b: torch.Tensor,
out_dtype: torch.dtype,
bias: Optional[torch.Tensor] = None,
) -> torch.Tensor:
assert b.shape[0] % 16 == 0 and b.shape[1] % 16 == 0
assert out_dtype is torch.bfloat16 or out_dtype is torch.float16
assert bias is None or bias.shape[0] == b.shape[1] and bias.dtype == out_dtype
m = a.shape[0]
n = b.shape[1]
# if current_platform.is_rocm():
# triton_scaled_mm_module = importlib.import_module(
# "vllm.model_executor.layers.quantization.compressed_tensors."
# "triton_scaled_mm")
# triton_scaled_mm = triton_scaled_mm_module.triton_scaled_mm
# return triton_scaled_mm(a, b, scale_a, scale_b, out_dtype, bias)
out = torch.empty((m, n), dtype=out_dtype, device=a.device)
ops.cutlass_scaled_mm(out, a, b, scale_a, scale_b, bias)
return out
def cutlass_scaled_mm_azp(
a: torch.Tensor,
b: torch.Tensor,
scale_a: torch.Tensor,
scale_b: torch.Tensor,
out_dtype: torch.dtype,
azp_adj: torch.Tensor,
azp: Optional[torch.Tensor] = None,
bias: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""
:param azp_adj: In the per-tensor case, this should include the azp.
Always per-channel.
:param azp: Only set in the per-token case. Per-token if set.
"""
assert b.shape[0] % 16 == 0 and b.shape[1] % 16 == 0
assert out_dtype is torch.bfloat16 or out_dtype is torch.float16
assert bias is None or bias.numel() == b.shape[1] and bias.dtype == out_dtype
assert azp is None or azp.numel() == a.shape[0]
m = a.shape[0]
n = b.shape[1]
out = torch.empty((m, n), dtype=out_dtype, device=a.device)
ops.cutlass_scaled_mm_azp(out, a, b, scale_a, scale_b, azp_adj, azp, bias)
return out
|