File size: 6,472 Bytes
165b25c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
from typing import TYPE_CHECKING

import torch

# neuron has torch version that doesn't even have impl_abstract
if TYPE_CHECKING:
    def register_fake(fn):
        return lambda name: fn
else:
    try:
        from torch.library import register_fake
    except ImportError:
        from torch.library import impl_abstract as register_fake

try:
    from ._ops import ops, add_op_namespace_prefix
except ImportError as e:
    # Fallback for local development.
    try:
        import _quantization

        ops = torch.ops._quantization

        def add_op_namespace_prefix(op_name: str):
            return f"_quantization::{op_name}"
    except ImportError:
        raise e


from .scalar_type import ScalarType


# fp8 marlin
def fp8_marlin_gemm(
    a: torch.Tensor,
    b_q_weight: torch.Tensor,
    b_scales: torch.Tensor,
    workspace: torch.Tensor,
    num_bits: int,
    size_m: int,
    size_n: int,
    size_k: int,
) -> torch.Tensor:
    return ops.fp8_marlin_gemm(
        a, b_q_weight, b_scales, workspace, num_bits, size_m, size_n, size_k
    )


# gptq_marlin
def gptq_marlin_gemm(
    a: torch.Tensor,
    b_q_weight: torch.Tensor,
    b_scales: torch.Tensor,
    b_zeros: torch.Tensor,
    g_idx: torch.Tensor,
    perm: torch.Tensor,
    workspace: torch.Tensor,
    b_q_type: ScalarType,
    size_m: int,
    size_n: int,
    size_k: int,
    is_k_full: bool,
    has_zp: bool = False,
    use_fp32_reduce: bool = False,
    is_zp_float: bool = False,
) -> torch.Tensor:
    return ops.gptq_marlin_gemm(
        a,
        b_q_weight,
        b_scales,
        b_zeros,
        g_idx,
        perm,
        workspace,
        b_q_type.id,
        size_m,
        size_n,
        size_k,
        is_k_full,
        has_zp,
        use_fp32_reduce,
        is_zp_float,
    )


# gptq_marlin
def gptq_marlin_repack(
    b_q_weight: torch.Tensor,
    perm: torch.Tensor,
    size_k: int,
    size_n: int,
    num_bits: int,
) -> torch.Tensor:
    return ops.gptq_marlin_repack(b_q_weight, perm, size_k, size_n, num_bits)


# gptq_marlin
def awq_marlin_repack(
    b_q_weight: torch.Tensor, size_k: int, size_n: int, num_bits: int
) -> torch.Tensor:
    return ops.awq_marlin_repack(b_q_weight, size_k, size_n, num_bits)


# marlin
def marlin_gemm(
    a: torch.Tensor,
    b_q_weight: torch.Tensor,
    b_scales: torch.Tensor,
    workspace: torch.Tensor,
    size_m: int,
    size_n: int,
    size_k: int,
) -> torch.Tensor:
    return ops.marlin_gemm(
        a, b_q_weight, b_scales, workspace, size_m, size_n, size_k
    )


# marlin_24
def gptq_marlin_24_gemm(
    a: torch.Tensor,
    b_q_weight: torch.Tensor,
    b_meta: torch.Tensor,
    b_scales: torch.Tensor,
    workspace: torch.Tensor,
    b_q_type: ScalarType,
    size_m: int,
    size_n: int,
    size_k: int,
) -> torch.Tensor:
    return ops.gptq_marlin_24_gemm(
        a, b_q_weight, b_meta, b_scales, workspace, b_q_type.id, size_m, size_n, size_k
    )


# qqq ops
def marlin_qqq_gemm(
    a: torch.Tensor,
    b_q_weight: torch.Tensor,
    s_tok: torch.Tensor,
    s_ch: torch.Tensor,
    s_group: torch.Tensor,
    workspace: torch.Tensor,
    size_m: int,
    size_n: int,
    size_k: int,
) -> torch.Tensor:
    return ops.marlin_qqq_gemm(
        a, b_q_weight, s_tok, s_ch, s_group, workspace, size_m, size_n, size_k
    )


# Fake ops

if hasattr(ops, "gptq_marlin_24_gemm"):
    @register_fake(add_op_namespace_prefix("fp8_marlin_gemm"))
    def _fp8_marlin_gemm_fake(a: torch.Tensor, b_q_weight: torch.Tensor,
                              b_scales: torch.Tensor, workspace: torch.Tensor,
                              num_bits: int, size_m: torch.SymInt,
                              size_n: torch.SymInt,
                              size_k: torch.SymInt) -> torch.Tensor:
        return torch.empty((size_m, size_n), dtype=a.dtype, device=a.device)

    @register_fake(add_op_namespace_prefix("gptq_marlin_24_gemm"))
    def _gptq_marlin_24_gemm_fake(a: torch.Tensor, b_q_weight: torch.Tensor,
                                    b_meta: torch.Tensor, b_scales: torch.Tensor,
                                    workspace: torch.Tensor,
                                    b_q_type: ScalarType, size_m: torch.SymInt,
                                    size_n: torch.SymInt,
                                    size_k: torch.SymInt) -> torch.Tensor:
        return torch.empty((size_m, size_n), device=a.device, dtype=a.dtype)

    @register_fake(add_op_namespace_prefix("gptq_marlin_gemm"))
    def _gptq_marlin_gemm_fake(a: torch.Tensor,
                                b_q_weight: torch.Tensor,
                                b_scales: torch.Tensor,
                                b_zeros: torch.Tensor,
                                g_idx: torch.Tensor,
                                perm: torch.Tensor,
                                workspace: torch.Tensor,
                                b_q_type: ScalarType,
                                size_m: torch.SymInt,
                                size_n: torch.SymInt,
                                size_k: torch.SymInt,
                                is_k_full: bool,
                                has_zp: bool = False,
                                use_fp32_reduce: bool = False,
                                is_zp_float: bool = False) -> torch.Tensor:
        return torch.empty((size_m, size_n), device=a.device, dtype=a.dtype)

    @register_fake(add_op_namespace_prefix("marlin_qqq_gemm"))
    def _marlin_qqq_gemm_fake(a: torch.Tensor, b_q_weight: torch.Tensor,
                                s_tok: torch.Tensor, s_ch: torch.Tensor,
                                s_group: torch.Tensor, workspace: torch.Tensor,
                                size_m: torch.SymInt, size_n: torch.SymInt,
                                size_k: torch.SymInt) -> torch.Tensor:
        return torch.empty((size_m, size_n),
                            dtype=torch.float16,
                            device=a.device)

    @register_fake(add_op_namespace_prefix("marlin_gemm"))
    def _marlin_gemm_fake(a: torch.Tensor, b_q_weight: torch.Tensor,
                            b_scales: torch.Tensor, workspace: torch.Tensor,
                            size_m: torch.SymInt, size_n: torch.SymInt,
                            size_k: torch.SymInt) -> torch.Tensor:
        return torch.empty((size_m, size_n),
                            dtype=torch.float16,
                            device=a.device)