File size: 17,236 Bytes
165b25c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 |
"""Utility functions used for tests and benchmarks"""
import random
from typing import List
import numpy
import torch
from quantization.scalar_type import ScalarType
from .marlin_utils_test import marlin_weights
from .quant_utils import gptq_quantize_weights
# This is PyTorch implementation of main part of reorder_meta()
# function, from tools/util/include/cutlass/util/host_reorder.h file
# of CUTLASS source tree. Furthermore, CUTLASS template for sparse
# GEMM decides upon layout of this matrix, and at the moment for the
# sparse GEMM executed on tensor cores, this is layout described by
# ColumnMajorInterleaved<2> data structure, in
# include/cutlass/layout/matrix.h of CUTLASS source tree. The
# reordering of meta matrix into meta_reordered matrix calculated
# according to these segments of CUTLASS code is re-implemented here.
# Note that this calculation produces offsets for scattering metadata
# matrix elements into reordered metadata matrix elements (or,
# equivalently, for gathering reordered metadata matrix element back
# into metadata matrix elements).
def _calculate_meta_reordering_scatter_offsets(m, meta_ncols, meta_dtype, device):
dst_rows = torch.arange(0, m, device=device)[:, None].repeat(1, meta_ncols)
dst_cols = torch.arange(0, meta_ncols, device=device).repeat(m, 1)
# Reorder the rows, then swizzle the 2x2 blocks.
group_x = 64
group_y = 32 if meta_dtype.itemsize == 2 else 16
dst_rows = (
dst_rows // group_x * group_x
+ (dst_rows % 2) * 2
+ (dst_rows % 8) // 4
+ ((dst_rows % group_y) % 4) // 2 * 32
+ ((dst_rows % group_x) // 8) * 4
)
topright = ((dst_rows % 2 == 0) & (dst_cols % 2 == 1)).to(torch.int8)
bottomleft = ((dst_rows % 2 == 1) & (dst_cols % 2 == 0)).to(torch.int8)
dst_rows += topright - bottomleft
dst_cols -= topright - bottomleft
# Assumed that meta tensor is to be stored in CUTLASS
# InterleavedColumnMajor layout, and reverse engineered
# corresponding code to store values into this tensor.
interleave = 2
cols_maj = dst_cols // interleave
cols_min = dst_cols % interleave
return (cols_maj * m * interleave + dst_rows * interleave + cols_min).view(-1)
# This function converts dense matrix into sparse semi-structured
# representation, producing "compressed" matrix, in the layout used by
# CUTLASS backend, and corresponding metadata matrix.
def sparse_semi_structured_from_dense_cutlass(dense):
if dense.dim() != 2:
raise RuntimeError(
f"Expected 2-dimensional dense tensor, got {dense.dim()}-dimensional tensor" # noqa: E501
)
m, k = dense.shape
device = dense.device
meta_dtype = torch.int8
if dense.dtype == torch.int8:
meta_dtype = torch.int32
elif dense.dtype in [torch.half, torch.bfloat16, torch.float, torch.int32]:
meta_dtype = torch.int16
else:
raise RuntimeError(f"Invalid datatype {dense.dtype} of dense matrix")
quadbits_per_meta_elem = meta_dtype.itemsize * 8 // 4
if quadbits_per_meta_elem not in (4, 8):
raise RuntimeError("Invalid number of elements per meta element calculated")
if meta_dtype == torch.int32:
if m % 16 != 0:
raise RuntimeError(
f"Number of rows of dense matrix {m} must be divisible by 16"
)
else:
if m % 32 != 0:
raise RuntimeError(
f"Number of rows of dense matrix {m} must be divisible by 32"
)
if k % (4 * quadbits_per_meta_elem) != 0:
raise RuntimeError(
f"Number of columns of dense matrix {k} must be divisible by {4 * quadbits_per_meta_elem}" # noqa: E501
)
if dense.dtype != torch.float:
ksparse = 4
dense_4 = dense.view(-1, k // ksparse, ksparse)
m0, m1, m2, m3 = (dense_4 != 0).unbind(-1)
else:
ksparse = 2
dense_2 = dense.view(-1, k // ksparse, ksparse)
m0, m2 = m1, m3 = (dense_2 != 0).unbind(-1)
meta_ncols = k // (ksparse * quadbits_per_meta_elem)
# Encoding quadruples of True/False values as follows:
# [True, True, False, False] -> 0b0100
# [True, False, True, False] -> 0b1000
# [False, True, True, False] -> 0b1001
# [True, False, False, True ] -> 0b1100
# [False, True, False, True ] -> 0b1101
# [False, False, True, True ] -> 0b1110
# Thus, lower two bits in the encoding are index of the True value
# at the lowest index in the quadruple, and the higher two bits in
# the encoding are index of the other True value in the quadruple.
# In case there are less than two True values, than False value or
# values at some index or indices are considered True for the
# encoding. In case there are more than two True values, then the
# excess True value(s) at some indices are considered False for
# the encoding. The exact encodings used for these cases are as
# follows:
# [False, False, False, False] -> 0b1110
# [False, False, False, True ] -> 0b1110
# [False, False, True, False] -> 0b1110
# [False, True, False, False] -> 0b1001
# [False, True, True, True ] -> 0b1101
# [True, False, False, False] -> 0b1000
# [True, False, True, True ] -> 0b1100
# [True, True, False, True ] -> 0b0100
# [True, True, True, False] -> 0b0100
# [True, True, True, True ] -> 0b0100
# These particular encodings are chosen, with the help of Espresso
# logic minimizer software, for the purpose of minimization of
# corresponding Boolean functions, that translate non-zero flags
# into encoding bits. Note also possible choices for the first
# and last of these encodings were limited only to (0b0100,
# 0b1110), in order to produce valid encodings for 1:2 sparsity
# case.
expr0 = m0 & m1
expr1 = ~m0 & m1
expr2 = ~m0 & ~m1
bit0 = expr1
bit1 = expr2
bit2 = expr0 | expr2 | m3
bit3 = expr1 | ~m1
idxs0 = bit0 | (bit1.to(torch.int64) << 1)
idxs1 = bit2 | (bit3.to(torch.int64) << 1)
if dense.dtype != torch.float:
sparse0 = dense_4.gather(
-1, idxs0.unsqueeze(-1)
) # type: ignore[possibly-undefined]
sparse1 = dense_4.gather(-1, idxs1.unsqueeze(-1))
sparse = torch.stack((sparse0, sparse1), dim=-1).view(m, k // 2)
else:
sparse = dense_2.gather(-1, idxs0.unsqueeze(-1) // 2).view(
m, k // 2
) # type: ignore[possibly-undefined]
meta_4 = idxs0 | (idxs1 << 2)
meta_n = meta_4.view((-1, meta_ncols, quadbits_per_meta_elem)).to(meta_dtype)
if quadbits_per_meta_elem == 4:
meta = (
meta_n[:, :, 0]
| (meta_n[:, :, 1] << 4)
| (meta_n[:, :, 2] << 8)
| (meta_n[:, :, 3] << 12)
)
elif quadbits_per_meta_elem == 8:
meta = (
meta_n[:, :, 0]
| (meta_n[:, :, 1] << 4)
| (meta_n[:, :, 2] << 8)
| (meta_n[:, :, 3] << 12)
| (meta_n[:, :, 4] << 16)
| (meta_n[:, :, 5] << 20)
| (meta_n[:, :, 6] << 24)
| (meta_n[:, :, 7] << 28)
)
# Reorder meta tensor elements.
meta_reordered = meta.new_empty(
(m * meta_ncols,)
) # type: ignore[possibly-undefined]
meta_offsets = _calculate_meta_reordering_scatter_offsets(
m, meta_ncols, meta_dtype, device
)
meta_reordered.scatter_(0, meta_offsets, meta.view(-1))
return (sparse, meta_reordered.view(m, meta_ncols))
# This function performs reverse of the function above - it
# reconstructs dense matrix from a pair of "compressed" matrix, given
# in the layout used by CUTLASS backend, and accompanying metadata
# matrix.
def sparse_semi_structured_to_dense_cutlass(sparse, meta_reordered):
if sparse.dim() != 2:
raise RuntimeError(
f"Expected 2-dimensional sparse tensor, got {sparse.dim()}-dimensional tensor" # noqa: E501
)
m, k = sparse.shape
device = sparse.device
if meta_reordered.dim() != 2:
raise RuntimeError(
f"Expected 2-dimensional meta tensor, got {meta_reordered.dim()}-dimensional tensor" # noqa: E501
)
if meta_reordered.device != device:
raise RuntimeError(
f"Expected meta matrix to be on {device} device, got matrix on {meta_reordered.device} device" # noqa: E501
)
meta_dtype = meta_reordered.dtype
if meta_dtype not in (torch.int16, torch.int32):
raise RuntimeError(f"Invalid datatype {meta_dtype} of meta matrix")
quadbits_per_meta_elem = meta_dtype.itemsize * 8 // 4
ksparse = 4 if sparse.dtype != torch.float else 2
meta_nrows, meta_ncols = meta_reordered.shape
if meta_nrows != m:
raise RuntimeError(
f"Number of rows of meta matrix {meta_nrows} must be equal to number of columns of spase matrix {m}" # noqa: E501
)
if meta_ncols * ksparse * quadbits_per_meta_elem != 2 * k:
raise RuntimeError(
f"Number of columns of sparse matrix {k} different from the {meta_ncols * ksparse * quadbits_per_meta_elem // 2}, " # noqa: E501
"expected according to the number of columns of meta matrix"
)
# Undo meta tensor elements reordering.
meta_offsets = _calculate_meta_reordering_scatter_offsets(
m, meta_ncols, meta_dtype, device
)
meta = torch.gather(meta_reordered.view(-1), 0, meta_offsets).view(m, meta_ncols)
# Unpack sparse tensor back to original dense tensor, using
# information provided by meta tensor. Note that torch.float
# datatype is handled pretty much the same as
# torch.half/torch.bfloat16, as metadata for a pair of torch.float
# value is encoded as if underlying 8 bytes contain four
# torch.half/torch.bfloat16 values, where either first two or last
# two are zeros.
meta_2 = torch.empty(
(m, meta_ncols, 2 * quadbits_per_meta_elem),
dtype=meta_dtype,
device=device,
)
if quadbits_per_meta_elem == 4:
meta_2[:, :, 0] = meta & 0b11
meta_2[:, :, 1] = (meta >> 2) & 0b11
meta_2[:, :, 2] = (meta >> 4) & 0b11
meta_2[:, :, 3] = (meta >> 6) & 0b11
meta_2[:, :, 4] = (meta >> 8) & 0b11
meta_2[:, :, 5] = (meta >> 10) & 0b11
meta_2[:, :, 6] = (meta >> 12) & 0b11
meta_2[:, :, 7] = (meta >> 14) & 0b11
elif quadbits_per_meta_elem == 8:
meta_2[:, :, 0] = meta & 0b11
meta_2[:, :, 1] = (meta >> 2) & 0b11
meta_2[:, :, 2] = (meta >> 4) & 0b11
meta_2[:, :, 3] = (meta >> 6) & 0b11
meta_2[:, :, 4] = (meta >> 8) & 0b11
meta_2[:, :, 5] = (meta >> 10) & 0b11
meta_2[:, :, 6] = (meta >> 12) & 0b11
meta_2[:, :, 7] = (meta >> 14) & 0b11
meta_2[:, :, 8] = (meta >> 16) & 0b11
meta_2[:, :, 9] = (meta >> 18) & 0b11
meta_2[:, :, 10] = (meta >> 20) & 0b11
meta_2[:, :, 11] = (meta >> 22) & 0b11
meta_2[:, :, 12] = (meta >> 24) & 0b11
meta_2[:, :, 13] = (meta >> 26) & 0b11
meta_2[:, :, 14] = (meta >> 28) & 0b11
meta_2[:, :, 15] = (meta >> 30) & 0b11
dense_offsets = meta_2.view(-1) + (
torch.arange(0, 2 * m * k // ksparse, device=device) * 4
).view(-1, 1).repeat(1, 2).view(-1)
dense = torch.zeros((m * 2 * k,), dtype=sparse.dtype, device=device)
if sparse.dtype != torch.float:
# dense.scatter_(0, dense_offsets, sparse.view(-1))
dense.scatter_(0, dense_offsets, sparse.reshape(-1))
else:
dense.view(torch.half).scatter_(
0, dense_offsets, sparse.view(torch.half).view(-1)
)
return dense.view(m, 2 * k)
def mask_creator(tensor):
"""
Class for creating N:M sparsity masks.
Masks will be created using the N:M ratio, where for every block of
M weights, N will be pruned based on ranked weight value. Each mask
will correspond to the given tensor.
:param N: The number of weights in a group to keep
:param M: The size of a weight group
"""
N = 2
M = 4
mask = None
# for i, tensor in enumerate(tensors):
if tensor.numel() % M != 0:
raise ValueError(
f"Tensor of size {tensor.shape} can't be evenly divided into " f"{M} groups"
)
num_groups = tensor.numel() // M
# N:M sparsity for linear layers
tensor_temp = tensor.detach().abs().reshape(num_groups, M)
index = torch.argsort(tensor_temp, dim=1)[:, : int(M - N)]
w_b = torch.ones(tensor_temp.shape, device=tensor_temp.device)
mask = w_b.scatter_(dim=1, index=index, value=0).reshape(tensor.shape)
return mask
def inject_24(w, size_k, size_n):
assert w.shape == (size_k, size_n)
mask = mask_creator(w.t()).t().cuda().bool()
return (mask * w).contiguous(), mask.contiguous()
def check_24(w, num_rows_to_sample=50, _verbose=False):
BLOCK_SIZE = 4
MAX_NON_ZEROS = 2
w = w.t().contiguous()
print("check_24: w.shape = {}".format(w.shape))
num_rows, num_cols = w.shape
sampled_row_idxs = random.choices(range(num_rows), k=num_rows_to_sample)
if _verbose:
print(f"Sampled row idxs = {sampled_row_idxs}")
total_segments = 0
non_24_segments = 0
for i in sampled_row_idxs:
for j in range(0, num_cols - BLOCK_SIZE, BLOCK_SIZE):
total_segments += 1
block = w[i, j : j + BLOCK_SIZE]
num_nonzero = torch.count_nonzero(block)
if num_nonzero > MAX_NON_ZEROS:
print("i = {} j = {} block = {}".format(i, j, block))
non_24_segments += 1
print(f"{non_24_segments} / {total_segments} do not have 2:4 structure.")
def compress_quantized_24_weight(q_24, size_k, size_n, wtype: ScalarType):
assert q_24.shape == (size_k, size_n)
# Remove bias to normalize over 0
q_24_no_zp = q_24 - wtype.bias
# Compress
q_24_no_zp = q_24_no_zp.t().contiguous()
q_24_no_zp_comp, meta = sparse_semi_structured_from_dense_cutlass(q_24_no_zp)
q_24_no_zp_comp = q_24_no_zp_comp.t().contiguous()
# Restore bias
q_24_comp = q_24_no_zp_comp + wtype.bias
# Resize meta to its actual shape (without moving any data)
meta = meta.resize_(meta.shape[1] // 2, meta.shape[0] * 2)
return q_24_comp, meta
def get_scale_perms_24():
scale_perm: List[int] = []
for i in range(8):
scale_perm.extend([i * 8 + j for j in [0, 4, 1, 5, 2, 6, 3, 7]])
scale_perm_single: List[int] = []
for i in range(8):
scale_perm_single.extend([8 * i + j for j in [0, 1, 2, 3, 4, 5, 6, 7]])
return scale_perm, scale_perm_single
def get_weight_perm_24(num_bits: int):
perm_list: List[int] = []
for i in range(32):
perm1: List[int] = []
col = i // 4
col_o = col // 2
for block in [0, 1]:
for row in [
2 * (i % 4),
2 * (i % 4) + 1,
2 * (i % 4 + 4),
2 * (i % 4 + 4) + 1,
]:
perm1.append(16 * row + col_o * 256 + 8 * (col % 2) + 4 * block)
for j in range(4):
perm_list.extend([p + 1 * j for p in perm1])
perm = numpy.array(perm_list)
if num_bits == 4:
interleave = numpy.array([0, 2, 4, 6, 1, 3, 5, 7])
elif num_bits == 8:
interleave = numpy.array([0, 2, 1, 3])
else:
raise ValueError("num_bits must be 4 or 8, got {}".format(num_bits))
perm = perm.reshape((-1, len(interleave)))[:, interleave].ravel()
perm = torch.from_numpy(perm)
return perm
def marlin_permute_scales_24(
s: torch.Tensor, size_k: int, size_n: int, group_size: int
) -> torch.Tensor:
scale_perm, scale_perm_single = get_scale_perms_24()
if group_size < size_k and group_size != -1:
s = s.reshape((-1, len(scale_perm)))[:, scale_perm]
else:
s = s.reshape((-1, len(scale_perm_single)))[:, scale_perm_single]
s = s.reshape((-1, size_n)).contiguous()
return s
def marlin_24_quantize(
w: torch.Tensor,
quant_type: ScalarType,
group_size: int,
):
size_k, size_n = w.shape
# Normalize group_size
if group_size == -1:
group_size = size_k
assert group_size <= size_k
# Inject 2:4 sparsity
w_24, mask_24 = inject_24(w, size_k, size_n)
# Quantize
w_24_ref, q_w_24, s, g_idx, rand_perm = gptq_quantize_weights(
w_24, quant_type, group_size, act_order=False
)
# Compress quantized weight
q_w_24_comp, meta = compress_quantized_24_weight(q_w_24, size_k, size_n, quant_type)
size_k_comp = size_k // 2
# Reformat to marlin
weight_perm = get_weight_perm_24(quant_type.size_bits)
marlin_24_q_w_comp = marlin_weights(
q_w_24_comp, size_k_comp, size_n, quant_type.size_bits, weight_perm
)
marlin_24_s = marlin_permute_scales_24(s, size_k, size_n, group_size)
# Create result
res_list = [w_24_ref, marlin_24_q_w_comp, meta, marlin_24_s]
for i in range(len(res_list)):
res_list[i] = res_list[i].to(w.device)
return res_list
|