File size: 19,471 Bytes
5c6fb68 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 |
#pragma once
#include "../../../attention/attention_dtypes.h"
#include <assert.h>
#include <float.h>
#include <stdint.h>
#include <type_traits>
namespace vllm {
#ifndef USE_ROCM
namespace fp8 {
#ifdef ENABLE_FP8
#if 0 // Disable the following code to reduce the binary size.
template <typename Tout, typename Tin>
__inline__ __device__ Tout
vec_conversion(const Tin &x, const __nv_fp8_interpretation_t fp8_type) {
return x;
}
// fp8 -> half
template <>
__inline__ __device__ uint16_t vec_conversion<uint16_t, uint8_t>(
const uint8_t &a, const __nv_fp8_interpretation_t fp8_type) {
__half_raw res = __nv_cvt_fp8_to_halfraw(a, fp8_type);
return res.x;
}
// fp8x2 -> half2
template <>
__inline__ __device__ uint32_t vec_conversion<uint32_t, uint16_t>(
const uint16_t &a, const __nv_fp8_interpretation_t fp8_type) {
union {
uint16_t u16[2];
uint32_t u32;
} tmp;
__half2_raw res = __nv_cvt_fp8x2_to_halfraw2(a, fp8_type);
tmp.u16[0] = res.x;
tmp.u16[1] = res.y;
return tmp.u32;
}
// fp8x4 -> half2x2
template <>
__inline__ __device__ uint2 vec_conversion<uint2, uint32_t>(
const uint32_t &a, const __nv_fp8_interpretation_t fp8_type) {
union {
uint2 u32x2;
uint32_t u32[2];
} tmp;
tmp.u32[0] = vec_conversion<uint32_t, uint16_t>((uint16_t)a, fp8_type);
tmp.u32[1] =
vec_conversion<uint32_t, uint16_t>((uint16_t)(a >> 16U), fp8_type);
return tmp.u32x2;
}
// fp8x8 -> half2x4
template <>
__inline__ __device__ uint4 vec_conversion<uint4, uint2>(
const uint2 &a, const __nv_fp8_interpretation_t fp8_type) {
union {
uint4 u64x2;
uint2 u64[2];
} tmp;
tmp.u64[0] = vec_conversion<uint2, uint32_t>(a.x, fp8_type);
tmp.u64[1] = vec_conversion<uint2, uint32_t>(a.y, fp8_type);
return tmp.u64x2;
}
// fp8 -> __nv_bfloat16
template <>
__inline__ __device__ __nv_bfloat16 vec_conversion<__nv_bfloat16, uint8_t>(
const uint8_t &a, const __nv_fp8_interpretation_t fp8_type) {
// Note there is no direct convert function from fp8 to bf16.
// fp8 -> half
__half_raw res = __nv_cvt_fp8_to_halfraw(a, fp8_type);
// half -> float -> bf16
float tmp = half_to_float(res.x);
return __float2bfloat16(tmp);
}
// fp8x2 -> __nv_bfloat162
template <>
__inline__ __device__ __nv_bfloat162 vec_conversion<__nv_bfloat162, uint16_t>(
const uint16_t &a, const __nv_fp8_interpretation_t fp8_type) {
__nv_bfloat162 res;
res.x = vec_conversion<__nv_bfloat16, uint8_t>((uint8_t)a, fp8_type);
res.y = vec_conversion<__nv_bfloat16, uint8_t>((uint8_t)(a >> 8U), fp8_type);
return res;
}
// fp8x4 -> bf16_4_t
template <>
__inline__ __device__ bf16_4_t vec_conversion<bf16_4_t, uint32_t>(
const uint32_t &a, const __nv_fp8_interpretation_t fp8_type) {
bf16_4_t res;
res.x = vec_conversion<__nv_bfloat162, uint16_t>((uint16_t)a, fp8_type);
res.y =
vec_conversion<__nv_bfloat162, uint16_t>((uint16_t)(a >> 16U), fp8_type);
return res;
}
// fp8x8 -> bf16_8_t
template <>
__inline__ __device__ bf16_8_t vec_conversion<bf16_8_t, uint2>(
const uint2 &a, const __nv_fp8_interpretation_t fp8_type) {
bf16_4_t tmp1, tmp2;
tmp1 = vec_conversion<bf16_4_t, uint32_t>(a.x, fp8_type);
tmp2 = vec_conversion<bf16_4_t, uint32_t>(a.y, fp8_type);
bf16_8_t res;
res.x = tmp1.x;
res.y = tmp1.y;
res.z = tmp2.x;
res.w = tmp2.y;
return res;
}
// fp8 -> float
template <>
__inline__ __device__ float
vec_conversion<float, uint8_t>(const uint8_t &a,
const __nv_fp8_interpretation_t fp8_type) {
// fp8 -> half
uint16_t tmp = vec_conversion<uint16_t, uint8_t>(a, fp8_type);
// half -> float
return half_to_float(tmp);
}
// fp8x2 -> float2
template <>
__inline__ __device__ float2 vec_conversion<float2, uint16_t>(
const uint16_t &a, const __nv_fp8_interpretation_t fp8_type) {
// fp8x2 -> half2
uint32_t tmp = vec_conversion<uint32_t, uint16_t>(a, fp8_type);
// half2 -> float2
return half2_to_float2(tmp);
}
// fp8x4 -> float4
template <>
__inline__ __device__ Float4_ vec_conversion<Float4_, uint32_t>(
const uint32_t &a, const __nv_fp8_interpretation_t fp8_type) {
Float4_ res;
res.x = vec_conversion<float2, uint16_t>((uint16_t)a, fp8_type);
res.y = vec_conversion<float2, uint16_t>((uint16_t)(a >> 16U), fp8_type);
return res;
}
// fp8x8 -> float8
template <>
__inline__ __device__ Float8_ vec_conversion<Float8_, uint2>(
const uint2 &a, const __nv_fp8_interpretation_t fp8_type) {
Float4_ tmp1, tmp2;
tmp1 = vec_conversion<Float4_, uint32_t>(a.x, fp8_type);
tmp2 = vec_conversion<Float4_, uint32_t>(a.y, fp8_type);
Float8_ res;
res.x = tmp1.x;
res.y = tmp1.y;
res.z = tmp2.x;
res.w = tmp2.y;
return res;
}
// half -> fp8
template <>
__inline__ __device__ uint8_t vec_conversion<uint8_t, uint16_t>(
const uint16_t &a, const __nv_fp8_interpretation_t fp8_type) {
__half_raw tmp;
tmp.x = a;
__nv_fp8_storage_t res =
__nv_cvt_halfraw_to_fp8(tmp, __NV_SATFINITE, fp8_type);
return (uint8_t)res;
}
// bf16 -> fp8
template <>
__inline__ __device__ uint8_t vec_conversion<uint8_t, __nv_bfloat16>(
const __nv_bfloat16 &a, const __nv_fp8_interpretation_t fp8_type) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
assert(false);
#else
__nv_fp8_storage_t res = __nv_cvt_bfloat16raw_to_fp8(
__nv_bfloat16_raw(a), __NV_SATFINITE, fp8_type);
return (uint8_t)res;
#endif
}
// float -> fp8
template <>
__inline__ __device__ uint8_t vec_conversion<uint8_t, float>(
const float &a, const __nv_fp8_interpretation_t fp8_type) {
__nv_fp8_storage_t res = __nv_cvt_float_to_fp8(a, __NV_SATFINITE, fp8_type);
return (uint8_t)res;
}
// fp8x4 -> float4
template <>
__inline__ __device__ float4 vec_conversion<float4, uint32_t>(
const uint32_t &a, const __nv_fp8_interpretation_t fp8_type) {
Float4_ tmp = vec_conversion<Float4_, uint32_t>(a, fp8_type);
float4 res = make_float4(tmp.x.x, tmp.x.y, tmp.y.x, tmp.y.y);
return res;
}
template <>
__inline__ __device__ uint32_t vec_conversion<uint32_t, float2>(
const float2 &a, const __nv_fp8_interpretation_t fp8_type) {
union {
half2 float16;
uint32_t uint32;
};
float16 = __float22half2_rn(a);
return uint32;
}
template <>
__inline__ __device__ uint2 vec_conversion<uint2, Float4_>(
const Float4_ &a, const __nv_fp8_interpretation_t fp8_type) {
uint2 b;
float2 val;
val.x = a.x.x;
val.y = a.x.y;
b.x = vec_conversion<uint32_t, float2>(val, fp8_type);
val.x = a.y.x;
val.y = a.y.y;
b.y = vec_conversion<uint32_t, float2>(val, fp8_type);
return b;
}
template <>
__inline__ __device__ float4 vec_conversion<float4, Float4_>(
const Float4_ &a, const __nv_fp8_interpretation_t fp8_type) {
float4 b;
b.x = a.x.x;
b.y = a.x.y;
b.z = a.y.x;
b.w = a.y.y;
return b;
}
template <>
__inline__ __device__ uint4 vec_conversion<uint4, Float8_>(
const Float8_ &a, const __nv_fp8_interpretation_t fp8_type) {
uint4 b;
b.x = vec_conversion<uint32_t, float2>(a.x, fp8_type);
b.y = vec_conversion<uint32_t, float2>(a.y, fp8_type);
b.z = vec_conversion<uint32_t, float2>(a.z, fp8_type);
b.w = vec_conversion<uint32_t, float2>(a.w, fp8_type);
return b;
}
template <>
__inline__ __device__ __nv_bfloat162 vec_conversion<__nv_bfloat162, float2>(
const float2 &a, const __nv_fp8_interpretation_t fp8_type) {
__nv_bfloat162 b;
from_float(b, a);
return b;
}
template <>
__inline__ __device__ bf16_4_t vec_conversion<bf16_4_t, Float4_>(
const Float4_ &a, const __nv_fp8_interpretation_t fp8_type) {
bf16_4_t b;
from_float(b, a);
return b;
}
template <>
__inline__ __device__ bf16_8_t vec_conversion<bf16_8_t, Float8_>(
const Float8_ &a, const __nv_fp8_interpretation_t fp8_type) {
bf16_8_t b;
from_float(b, a);
return b;
}
#endif
/* Scaled and vectorized conversions, for data exchange between high and low
precision domains Convention of the scale in API, e.g: FP8_data =
Quantization( High_Precision_data / scale ) s.t. Quantize(HP / scale) => FP8
Dequant(FP8) * scale => HP
*/
template <typename Tout, typename Tin>
__inline__ __device__ Tout scaled_vec_conversion(
const Tin& x, const float scale, const __nv_fp8_interpretation_t fp8_type) {
return x;
}
// fp8 -> half
template <>
__inline__ __device__ uint16_t scaled_vec_conversion<uint16_t, uint8_t>(
const uint8_t& a, const float scale,
const __nv_fp8_interpretation_t fp8_type) {
__half_raw tmp = __nv_cvt_fp8_to_halfraw(a, fp8_type);
return float_to_half(half_to_float(tmp.x) * scale);
}
// fp8x2 -> half2
template <>
__inline__ __device__ uint32_t scaled_vec_conversion<uint32_t, uint16_t>(
const uint16_t& a, const float scale,
const __nv_fp8_interpretation_t fp8_type) {
union {
uint16_t u16[2];
uint32_t u32;
} tmp;
__half2_raw res = __nv_cvt_fp8x2_to_halfraw2(a, fp8_type);
tmp.u16[0] = float_to_half(half_to_float(res.x) * scale);
tmp.u16[1] = float_to_half(half_to_float(res.y) * scale);
return tmp.u32;
}
// fp8x4 -> half2x2
template <>
__inline__ __device__ uint2 scaled_vec_conversion<uint2, uint32_t>(
const uint32_t& a, const float scale,
const __nv_fp8_interpretation_t fp8_type) {
union {
uint2 u32x2;
uint32_t u32[2];
} tmp;
tmp.u32[0] =
scaled_vec_conversion<uint32_t, uint16_t>((uint16_t)a, scale, fp8_type);
tmp.u32[1] = scaled_vec_conversion<uint32_t, uint16_t>((uint16_t)(a >> 16U),
scale, fp8_type);
return tmp.u32x2;
}
// fp8x8 -> half2x4
template <>
__inline__ __device__ uint4
scaled_vec_conversion<uint4, uint2>(const uint2& a, const float scale,
const __nv_fp8_interpretation_t fp8_type) {
union {
uint4 u64x2;
uint2 u64[2];
} tmp;
tmp.u64[0] = scaled_vec_conversion<uint2, uint32_t>(a.x, scale, fp8_type);
tmp.u64[1] = scaled_vec_conversion<uint2, uint32_t>(a.y, scale, fp8_type);
return tmp.u64x2;
}
// fp8 -> __nv_bfloat16
template <>
__inline__ __device__ __nv_bfloat16
scaled_vec_conversion<__nv_bfloat16, uint8_t>(
const uint8_t& a, const float scale,
const __nv_fp8_interpretation_t fp8_type) {
// Note there is no direct convert function from fp8 to bf16.
// fp8 -> half
__half_raw res = __nv_cvt_fp8_to_halfraw(a, fp8_type);
// half -> float -> bf16
float tmp = half_to_float(res.x);
return __float2bfloat16(tmp * scale);
}
// fp8x2 -> __nv_bfloat162
template <>
__inline__ __device__ __nv_bfloat162
scaled_vec_conversion<__nv_bfloat162, uint16_t>(
const uint16_t& a, const float scale,
const __nv_fp8_interpretation_t fp8_type) {
__nv_bfloat162 res;
res.x = scaled_vec_conversion<__nv_bfloat16, uint8_t>((uint8_t)a, scale,
fp8_type);
res.y = scaled_vec_conversion<__nv_bfloat16, uint8_t>((uint8_t)(a >> 8U),
scale, fp8_type);
return res;
}
// fp8x4 -> bf16_4_t
template <>
__inline__ __device__ bf16_4_t scaled_vec_conversion<bf16_4_t, uint32_t>(
const uint32_t& a, const float scale,
const __nv_fp8_interpretation_t fp8_type) {
bf16_4_t res;
res.x = scaled_vec_conversion<__nv_bfloat162, uint16_t>((uint16_t)a, scale,
fp8_type);
res.y = scaled_vec_conversion<__nv_bfloat162, uint16_t>((uint16_t)(a >> 16U),
scale, fp8_type);
return res;
}
// fp8x8 -> bf16_8_t
template <>
__inline__ __device__ bf16_8_t scaled_vec_conversion<bf16_8_t, uint2>(
const uint2& a, const float scale,
const __nv_fp8_interpretation_t fp8_type) {
bf16_4_t tmp1, tmp2;
tmp1 = scaled_vec_conversion<bf16_4_t, uint32_t>(a.x, scale, fp8_type);
tmp2 = scaled_vec_conversion<bf16_4_t, uint32_t>(a.y, scale, fp8_type);
bf16_8_t res;
res.x = tmp1.x;
res.y = tmp1.y;
res.z = tmp2.x;
res.w = tmp2.y;
return res;
}
// fp8 -> float
template <>
__inline__ __device__ float scaled_vec_conversion<float, uint8_t>(
const uint8_t& a, const float scale,
const __nv_fp8_interpretation_t fp8_type) {
// fp8 -> half
__half_raw res = __nv_cvt_fp8_to_halfraw(a, fp8_type);
uint16_t tmp = res.x;
// half -> float
return half_to_float(tmp) * scale;
}
// fp8x2 -> float2
template <>
__inline__ __device__ float2 scaled_vec_conversion<float2, uint16_t>(
const uint16_t& a, const float scale,
const __nv_fp8_interpretation_t fp8_type) {
// fp8x2 -> half2
uint32_t tmp = scaled_vec_conversion<uint32_t, uint16_t>(a, scale, fp8_type);
// half2 -> float2
return half2_to_float2(tmp);
}
// fp8x4 -> float4
template <>
__inline__ __device__ Float4_ scaled_vec_conversion<Float4_, uint32_t>(
const uint32_t& a, const float scale,
const __nv_fp8_interpretation_t fp8_type) {
Float4_ res;
res.x = scaled_vec_conversion<float2, uint16_t>((uint16_t)a, scale, fp8_type);
res.y = scaled_vec_conversion<float2, uint16_t>((uint16_t)(a >> 16U), scale,
fp8_type);
return res;
}
// fp8x8 -> float8
template <>
__inline__ __device__ Float8_ scaled_vec_conversion<Float8_, uint2>(
const uint2& a, const float scale,
const __nv_fp8_interpretation_t fp8_type) {
Float4_ tmp1, tmp2;
tmp1 = scaled_vec_conversion<Float4_, uint32_t>(a.x, scale, fp8_type);
tmp2 = scaled_vec_conversion<Float4_, uint32_t>(a.y, scale, fp8_type);
Float8_ res;
res.x = tmp1.x;
res.y = tmp1.y;
res.z = tmp2.x;
res.w = tmp2.y;
return res;
}
// half -> fp8
template <>
__inline__ __device__ uint8_t scaled_vec_conversion<uint8_t, uint16_t>(
const uint16_t& a, const float scale,
const __nv_fp8_interpretation_t fp8_type) {
__nv_fp8_storage_t res =
__nv_cvt_float_to_fp8(half_to_float(a) / scale, __NV_SATFINITE, fp8_type);
return (uint8_t)res;
}
// bf16 -> fp8
template <>
__inline__ __device__ uint8_t scaled_vec_conversion<uint8_t, __nv_bfloat16>(
const __nv_bfloat16& a, const float scale,
const __nv_fp8_interpretation_t fp8_type) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
assert(false);
#else
__nv_fp8_storage_t res = __nv_cvt_float_to_fp8(__bfloat162float(a) / scale,
__NV_SATFINITE, fp8_type);
return (uint8_t)res;
#endif
__builtin_unreachable(); // Suppress missing return statement warning
}
// float -> fp8
template <>
__inline__ __device__ uint8_t scaled_vec_conversion<uint8_t, float>(
const float& a, const float scale,
const __nv_fp8_interpretation_t fp8_type) {
__nv_fp8_storage_t res =
__nv_cvt_float_to_fp8(a / scale, __NV_SATFINITE, fp8_type);
return (uint8_t)res;
}
// fp8x4 -> float4
template <>
__inline__ __device__ float4 scaled_vec_conversion<float4, uint32_t>(
const uint32_t& a, const float scale,
const __nv_fp8_interpretation_t fp8_type) {
Float4_ tmp = scaled_vec_conversion<Float4_, uint32_t>(a, scale, fp8_type);
float4 res = make_float4(tmp.x.x, tmp.x.y, tmp.y.x, tmp.y.y);
return res;
}
#endif // ENABLE_FP8
template <typename Tout, typename Tin, Fp8KVCacheDataType kv_dt>
__inline__ __device__ Tout convert(const Tin& x) {
#if 0 // Disable the following code to reduce the binary size.
if constexpr (kv_dt == Fp8KVCacheDataType::kFp8E4M3) {
return vec_conversion<Tout, Tin>(x, __NV_E4M3);
} else if constexpr (kv_dt == Fp8KVCacheDataType::kFp8E5M2) {
return vec_conversion<Tout, Tin>(x, __NV_E5M2);
}
#endif
assert(false);
__builtin_unreachable(); // Suppress missing return statement warning
}
template <typename Tout, typename Tin, Fp8KVCacheDataType kv_dt>
__inline__ __device__ Tout scaled_convert(const Tin& x, const float scale) {
#ifdef ENABLE_FP8
if constexpr (kv_dt == Fp8KVCacheDataType::kFp8E4M3) {
return scaled_vec_conversion<Tout, Tin>(x, scale, __NV_E4M3);
} else if constexpr (kv_dt == Fp8KVCacheDataType::kFp8E5M2) {
return scaled_vec_conversion<Tout, Tin>(x, scale, __NV_E5M2);
}
#endif
assert(false);
__builtin_unreachable(); // Suppress missing return statement warning
}
// The following macro is used to dispatch the conversion function based on
// the data type of the key and value cache. The FN is a macro that calls a
// function with template<typename scalar_t, typename cache_t,
// Fp8KVCacheDataType kv_dt>.
#define DISPATCH_BY_KV_CACHE_DTYPE(SRC_DTYPE, KV_DTYPE, FN) \
if (KV_DTYPE == "auto") { \
if (SRC_DTYPE == at::ScalarType::Float) { \
FN(float, float, vllm::Fp8KVCacheDataType::kAuto); \
} else if (SRC_DTYPE == at::ScalarType::Half) { \
FN(uint16_t, uint16_t, vllm::Fp8KVCacheDataType::kAuto); \
} else if (SRC_DTYPE == at::ScalarType::BFloat16) { \
FN(__nv_bfloat16, __nv_bfloat16, vllm::Fp8KVCacheDataType::kAuto); \
} else { \
TORCH_CHECK(false, "Unsupported input type of kv cache: ", SRC_DTYPE); \
} \
} else { \
if (KV_DTYPE == "fp8" || KV_DTYPE == "fp8_e4m3") { \
if (SRC_DTYPE == at::ScalarType::Float) { \
FN(float, uint8_t, vllm::Fp8KVCacheDataType::kFp8E4M3); \
} else if (SRC_DTYPE == at::ScalarType::Half) { \
FN(uint16_t, uint8_t, vllm::Fp8KVCacheDataType::kFp8E4M3); \
} else if (SRC_DTYPE == at::ScalarType::BFloat16) { \
FN(__nv_bfloat16, uint8_t, vllm::Fp8KVCacheDataType::kFp8E4M3); \
} else { \
TORCH_CHECK(false, \
"Unsupported input type of kv cache: ", SRC_DTYPE); \
} \
} else if (KV_DTYPE == "fp8_e5m2") { \
if (SRC_DTYPE == at::ScalarType::Float) { \
FN(float, uint8_t, vllm::Fp8KVCacheDataType::kFp8E5M2); \
} else if (SRC_DTYPE == at::ScalarType::Half) { \
FN(uint16_t, uint8_t, vllm::Fp8KVCacheDataType::kFp8E5M2); \
} else if (SRC_DTYPE == at::ScalarType::BFloat16) { \
FN(__nv_bfloat16, uint8_t, vllm::Fp8KVCacheDataType::kFp8E5M2); \
} else { \
TORCH_CHECK(false, \
"Unsupported input type of kv cache: ", SRC_DTYPE); \
} \
} else { \
TORCH_CHECK(false, "Unsupported data type of kv cache: ", KV_DTYPE); \
} \
}
} // namespace fp8
#endif // not USE_ROCM
} // namespace vllm
|