File size: 19,953 Bytes
165b25c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
"""Tests for the marlin kernel.

Run `pytest tests/kernels/marlin/test_marlin_gemm.py`.
"""

import pytest
import torch

import quantization

from tests.kernels.utils import DEFAULT_OPCHECK_TEST_UTILS, opcheck

from quantization.utils.marlin_utils import (
    GPTQ_MARLIN_24_MAX_PARALLEL,
    GPTQ_MARLIN_24_MIN_THREAD_N,
    GPTQ_MARLIN_24_SUPPORTED_GROUP_SIZES,
    GPTQ_MARLIN_24_SUPPORTED_QUANT_TYPES,
    GPTQ_MARLIN_MAX_PARALLEL,
    GPTQ_MARLIN_MIN_THREAD_N,
    MARLIN_SUPPORTED_GROUP_SIZES,
    MARLIN_QQQ_MAX_PARALLEL,
    MARLIN_QQQ_MIN_THREAD_N,
    MARLIN_QQQ_SUPPORTED_GROUP_SIZES,
    MARLIN_QQQ_SUPPORTED_NUM_BITS,
    marlin_make_empty_g_idx,
    marlin_permute_scales,
    query_marlin_supported_quant_types,
)
from quantization.utils.marlin_utils_fp8 import (
    pack_fp8_to_int32,
)
from quantization.utils.quant_utils import (
    awq_pack,
    gptq_pack,
    gptq_quantize_weights,
    quantize_weights,
    sort_weights,
)
from quantization.scalar_type import scalar_types

from quantization.utils.marlin_utils_test import (
    MarlinWorkspace,
    awq_marlin_quantize,
    get_weight_perm,
    marlin_quantize,
    marlin_weights,
)
from quantization.utils.marlin_utils_test_24 import (
    marlin_24_quantize,
)
from quantization.utils.marlin_utils_test_qqq import (  # noqa: E501
    marlin_qqq_quantize,
)


# Avoid torch._dynamo.exc.Unsupported: cache_size_limit reached
torch._dynamo.config.cache_size_limit = 128


capability = torch.cuda.get_device_capability()
capability = capability[0] * 10 + capability[1]


ACT_ORDER_OPTS = [False, True]
K_FULL_OPTS = [False, True]
USE_FP32_REDUCE_OPTS = [False, True]

MARLIN_K_CHUNKS = [128]
MARLIN_N_CHUNKS = [64, 256]

MARLIN_24_K_CHUNKS = [128]
MARLIN_24_N_CHUNKS = [512]

HQQ_SUPPORTED_GROUP_SIZES = [64]

MNK_FACTORS = [
    (1, 1, 1),
    (1, 4, 8),
    (1, 7, 5),
    (13, 17, 67),
    (26, 37, 13),
    (67, 13, 11),
    (257, 13, 11),
    (658, 13, 11),
]

DTYPES = [torch.float16, torch.bfloat16]


def compute_max_diff(output, output_ref):
    return torch.mean(torch.abs(output - output_ref)) / torch.mean(
        torch.abs(output_ref)
    )


def rand_data(shape, dtype=torch.float16):
    return torch.randn(shape, dtype=dtype, device="cuda")


@pytest.mark.skipif(
    capability < 80,
    reason="Marlin is not supported on this GPU type.",
)
@pytest.mark.parametrize("k_chunk", MARLIN_K_CHUNKS)
@pytest.mark.parametrize("n_chunk", MARLIN_N_CHUNKS)
@pytest.mark.parametrize("quant_type", query_marlin_supported_quant_types(False))
@pytest.mark.parametrize("group_size", MARLIN_SUPPORTED_GROUP_SIZES)
@pytest.mark.parametrize("act_order", ACT_ORDER_OPTS)
@pytest.mark.parametrize("mnk_factors", MNK_FACTORS)
def test_gptq_marlin_repack(
    k_chunk, n_chunk, quant_type, group_size, act_order, mnk_factors
):
    m_factor, n_factor, k_factor = mnk_factors

    size_k = k_chunk * k_factor
    size_n = n_chunk * n_factor

    # Filter act_order
    if act_order:
        if group_size == -1:
            return
        if group_size == size_k:
            return

    # Normalize group_size
    if group_size == -1:
        group_size = size_k
    assert group_size <= size_k

    # Create input
    b_weight = rand_data((size_k, size_n))

    # Quantize (and apply act_order if provided)
    w_ref, q_w, s, g_idx, rand_perm = gptq_quantize_weights(
        b_weight, quant_type, group_size, act_order
    )

    # Pack to GPTQ format
    q_w_gptq = gptq_pack(q_w, quant_type.size_bits, size_k, size_n)

    # For act_order, sort the "weights" and "g_idx" so that group ids are
    # increasing
    sort_indices = torch.empty(0, dtype=torch.int, device=b_weight.device)
    if act_order:
        q_w, g_idx, sort_indices = sort_weights(q_w, g_idx)

    # Pack to Marlin format
    weight_perm = get_weight_perm(quant_type.size_bits)
    marlin_q_w_1 = marlin_weights(
        q_w, size_k, size_n, quant_type.size_bits, weight_perm
    )

    opcheck(
        quantization._ops.ops.gptq_marlin_repack,
        (q_w_gptq, sort_indices, size_k, size_n, quant_type.size_bits),
    )

    # Run Marlin repack GPU kernel
    marlin_q_w_2 = quantization.gptq_marlin_repack(
        q_w_gptq,
        sort_indices,
        size_k,
        size_n,
        quant_type.size_bits,
    )
    torch.cuda.synchronize()

    torch.testing.assert_close(marlin_q_w_1, marlin_q_w_2)


@pytest.mark.skipif(
    capability < 80,
    reason="Marlin is not supported on this GPU type.",
)
@pytest.mark.parametrize("k_chunk", MARLIN_K_CHUNKS)
@pytest.mark.parametrize("n_chunk", MARLIN_N_CHUNKS)
@pytest.mark.parametrize("quant_type", query_marlin_supported_quant_types(False))
@pytest.mark.parametrize("group_size", MARLIN_SUPPORTED_GROUP_SIZES)
@pytest.mark.parametrize("mnk_factors", MNK_FACTORS)
def test_awq_marlin_repack(k_chunk, n_chunk, quant_type, group_size, mnk_factors):
    m_factor, n_factor, k_factor = mnk_factors

    size_k = k_chunk * k_factor
    size_n = n_chunk * n_factor

    # Normalize group_size
    if group_size == -1:
        group_size = size_k
    assert group_size <= size_k

    # Create input
    b_weight = rand_data((size_k, size_n))

    # Quantize
    w_ref, q_w, s, zp = quantize_weights(
        b_weight, quant_type, group_size, zero_points=True
    )

    # Pack to AWQ format
    q_w_awq = awq_pack(q_w, quant_type.size_bits, size_k, size_n)

    # Pack to Marlin format
    weight_perm = get_weight_perm(quant_type.size_bits)
    marlin_q_w_1 = marlin_weights(
        q_w, size_k, size_n, quant_type.size_bits, weight_perm
    )

    opcheck(
        quantization._ops.ops.awq_marlin_repack, (q_w_awq, size_k, size_n, quant_type.size_bits)
    )

    # Run Marlin repack GPU kernel
    marlin_q_w_2 = quantization.awq_marlin_repack(
        q_w_awq,
        size_k,
        size_n,
        quant_type.size_bits,
    )
    torch.cuda.synchronize()

    torch.testing.assert_close(marlin_q_w_1, marlin_q_w_2)


@pytest.mark.skipif(
    capability < 80,
    reason="Marlin is not supported on this GPU type.",
)
@pytest.mark.parametrize("k_chunk", MARLIN_K_CHUNKS)
@pytest.mark.parametrize("n_chunk", MARLIN_N_CHUNKS)
@pytest.mark.parametrize("quant_type", query_marlin_supported_quant_types(False))
@pytest.mark.parametrize("group_size", MARLIN_SUPPORTED_GROUP_SIZES)
@pytest.mark.parametrize("mnk_factors", MNK_FACTORS)
@pytest.mark.parametrize("act_order", ACT_ORDER_OPTS)
@pytest.mark.parametrize("is_k_full", K_FULL_OPTS)
@pytest.mark.parametrize("use_fp32_reduce", USE_FP32_REDUCE_OPTS)
def test_gptq_marlin_gemm(
    k_chunk,
    n_chunk,
    quant_type,
    group_size,
    mnk_factors,
    act_order,
    is_k_full,
    use_fp32_reduce,
):
    m_factor, n_factor, k_factor = mnk_factors

    size_m = m_factor
    size_k = k_chunk * k_factor
    size_n = n_chunk * n_factor

    if act_order:
        if group_size == -1:
            return
        if group_size == size_k:
            return

    a_input = rand_data((size_m, size_k))
    b_weight = rand_data((size_k, size_n))

    w_ref, marlin_q_w, marlin_s, g_idx, sort_indices, _ = marlin_quantize(
        b_weight, quant_type, group_size, act_order
    )

    marlin_zp = marlin_make_empty_g_idx(marlin_s.device)

    workspace = MarlinWorkspace(
        size_n, GPTQ_MARLIN_MIN_THREAD_N, GPTQ_MARLIN_MAX_PARALLEL
    )

    opcheck(
        quantization._ops.ops.gptq_marlin_gemm,
        (
            a_input,
            marlin_q_w,
            marlin_s,
            marlin_zp,
            g_idx,
            sort_indices,
            workspace.scratch,
            quant_type.id,
            a_input.shape[0],
            b_weight.shape[1],
            a_input.shape[1],
            is_k_full,
            False,
            use_fp32_reduce,
            False,
        ),
        test_utils=DEFAULT_OPCHECK_TEST_UTILS,
    )

    output = quantization.gptq_marlin_gemm(
        a_input,
        marlin_q_w,
        marlin_s,
        marlin_zp,
        g_idx,
        sort_indices,
        workspace.scratch,
        quant_type,
        a_input.shape[0],
        b_weight.shape[1],
        a_input.shape[1],
        is_k_full=is_k_full,
        has_zp=False,
        use_fp32_reduce=use_fp32_reduce,
        is_zp_float=False,
    )
    output_ref = torch.matmul(a_input, w_ref)

    torch.cuda.synchronize()

    max_diff = compute_max_diff(output, output_ref)

    assert max_diff < 0.04


# TODO: find better way to test this?
@torch.compile(fullgraph=True)
def marlin_24_gemm_tester(
    a_input,
    marlin_24_q_w_comp,
    marlin_24_meta,
    marlin_24_s,
    scratch,
    quant_type,
    size_m,
    size_n,
    size_k,
):
    return quantization.gptq_marlin_24_gemm(
        a_input,
        marlin_24_q_w_comp,
        marlin_24_meta,
        marlin_24_s,
        scratch,
        quant_type,
        size_m,
        size_n,
        size_k,
    )


@pytest.mark.skipif(
    capability < 80,
    reason="Marlin is not supported on this GPU type.",
)
@pytest.mark.parametrize("k_chunk", MARLIN_24_K_CHUNKS)
@pytest.mark.parametrize("n_chunk", MARLIN_24_N_CHUNKS)
@pytest.mark.parametrize("quant_type", GPTQ_MARLIN_24_SUPPORTED_QUANT_TYPES)
@pytest.mark.parametrize("group_size", GPTQ_MARLIN_24_SUPPORTED_GROUP_SIZES)
@pytest.mark.parametrize("mnk_factors", MNK_FACTORS)
def test_gptq_marlin_24_gemm(k_chunk, n_chunk, quant_type, group_size, mnk_factors):
    m_factor, n_factor, k_factor = mnk_factors

    size_m = m_factor
    size_k = k_chunk * k_factor
    size_n = n_chunk * n_factor

    a_input = rand_data((size_m, size_k))
    b_weight = rand_data((size_k, size_n))

    (w_24_ref, marlin_24_q_w_comp, marlin_24_meta, marlin_24_s) = marlin_24_quantize(
        b_weight, quant_type, group_size
    )

    workspace_24 = MarlinWorkspace(
        size_n, GPTQ_MARLIN_24_MIN_THREAD_N, GPTQ_MARLIN_24_MAX_PARALLEL
    )

    output_ref = torch.matmul(a_input, w_24_ref)

    opcheck(
        quantization._ops.ops.gptq_marlin_24_gemm,
        (
            a_input,
            marlin_24_q_w_comp,
            marlin_24_meta,
            marlin_24_s,
            workspace_24.scratch,
            quant_type.id,
            a_input.shape[0],
            b_weight.shape[1],
            a_input.shape[1],
        ),
        test_utils=DEFAULT_OPCHECK_TEST_UTILS,
    )

    output = marlin_24_gemm_tester(
        a_input,
        marlin_24_q_w_comp,
        marlin_24_meta,
        marlin_24_s,
        workspace_24.scratch,
        quant_type,
        a_input.shape[0],
        b_weight.shape[1],
        a_input.shape[1],
    )

    torch.cuda.synchronize()

    max_diff = compute_max_diff(output, output_ref)

    assert max_diff < 0.04


@pytest.mark.skipif(
    capability < 80,
    reason="Marlin is not supported on this GPU type.",
)
@pytest.mark.parametrize("k_chunk", MARLIN_K_CHUNKS)
@pytest.mark.parametrize("n_chunk", MARLIN_N_CHUNKS)
@pytest.mark.parametrize("num_bits", [8])
@pytest.mark.parametrize("group_size", [-1])
@pytest.mark.parametrize("mnk_factors", MNK_FACTORS)
@pytest.mark.parametrize("dtype", DTYPES)
def test_fp8_marlin_gemm(
    k_chunk,
    n_chunk,
    num_bits,
    group_size,
    mnk_factors,
    dtype,
):
    m_factor, n_factor, k_factor = mnk_factors

    size_m = m_factor
    size_k = k_chunk * k_factor
    size_n = n_chunk * n_factor

    a_input = rand_data((size_m, size_k), dtype=dtype)
    b_weight = rand_data((size_k, size_n), dtype=dtype)

    # WEIGHTS
    fp8_weight, weight_scale = quantization.scaled_fp8_quant(b_weight, scale=None)
    # Repack weights to gptq format (packed int32 elements)
    packed_gptq_qweight = pack_fp8_to_int32(fp8_weight)
    # Repack weights to marlin format
    marlin_qweight = quantization.gptq_marlin_repack(
        b_q_weight=packed_gptq_qweight,
        perm=torch.empty(0, dtype=torch.int, device="cuda"),
        size_k=size_k,
        size_n=size_n,
        num_bits=8,
    )

    # WEIGHT SCALES
    # Currently Marlin doesn't support per-tensor scales, so we
    # expand it to channelwise
    scales = weight_scale.repeat(1, size_n).to(a_input.dtype).to("cuda")
    # Permute scales
    marlin_scales = marlin_permute_scales(
        s=scales, size_k=size_k, size_n=size_n, group_size=-1
    )

    workspace = MarlinWorkspace(
        size_n, GPTQ_MARLIN_MIN_THREAD_N, GPTQ_MARLIN_MAX_PARALLEL
    )

    opcheck(
        quantization._ops.ops.fp8_marlin_gemm,
        (
            a_input,
            marlin_qweight,
            marlin_scales,
            workspace.scratch,
            num_bits,
            a_input.shape[0],
            b_weight.shape[1],
            a_input.shape[1],
        ),
    )

    output = quantization.fp8_marlin_gemm(
        a=a_input,
        b_q_weight=marlin_qweight,
        b_scales=marlin_scales,
        workspace=workspace.scratch,
        num_bits=num_bits,
        size_m=a_input.shape[0],
        size_n=b_weight.shape[1],
        size_k=a_input.shape[1],
    )
    output_ref = torch.matmul(a_input, b_weight)

    torch.cuda.synchronize()

    max_diff = compute_max_diff(output, output_ref)

    assert max_diff < 0.04


@pytest.mark.skipif(
    capability < 80,
    reason="Marlin is not supported on this GPU type.",
)
@pytest.mark.parametrize("k_chunk", MARLIN_K_CHUNKS)
@pytest.mark.parametrize("n_chunk", MARLIN_N_CHUNKS)
@pytest.mark.parametrize("quant_type", query_marlin_supported_quant_types(True))
@pytest.mark.parametrize("group_size", MARLIN_SUPPORTED_GROUP_SIZES)
@pytest.mark.parametrize("mnk_factors", MNK_FACTORS)
@pytest.mark.parametrize("use_fp32_reduce", USE_FP32_REDUCE_OPTS)
def test_awq_marlin_gemm(
    k_chunk,
    n_chunk,
    quant_type,
    group_size,
    mnk_factors,
    use_fp32_reduce,
):
    m_factor, n_factor, k_factor = mnk_factors

    size_m = m_factor
    size_k = k_chunk * k_factor
    size_n = n_chunk * n_factor

    a_input = rand_data((size_m, size_k))
    b_weight = rand_data((size_k, size_n))

    w_ref, marlin_q_w, marlin_s, marlin_zp = awq_marlin_quantize(
        b_weight, quant_type, group_size
    )

    g_idx = torch.empty(0, dtype=torch.int, device=marlin_q_w.device)
    sort_indices = torch.empty(0, dtype=torch.int, device=marlin_q_w.device)
    is_k_full = True
    has_zp = True

    workspace = MarlinWorkspace(
        size_n, GPTQ_MARLIN_MIN_THREAD_N, GPTQ_MARLIN_MAX_PARALLEL
    )

    output = quantization.gptq_marlin_gemm(
        a_input,
        marlin_q_w,
        marlin_s,
        marlin_zp,
        g_idx,
        sort_indices,
        workspace.scratch,
        quant_type,
        a_input.shape[0],
        b_weight.shape[1],
        a_input.shape[1],
        is_k_full=is_k_full,
        has_zp=has_zp,
        use_fp32_reduce=use_fp32_reduce,
        is_zp_float=False,
    )
    output_ref = torch.matmul(a_input, w_ref)

    torch.cuda.synchronize()

    max_diff = compute_max_diff(output, output_ref)

    assert max_diff < 0.04


@pytest.mark.skipif(
    capability < 80,
    reason="Marlin is not supported on this GPU type.",
)
@pytest.mark.parametrize("k_chunk", MARLIN_K_CHUNKS)
@pytest.mark.parametrize("n_chunk", MARLIN_N_CHUNKS)
@pytest.mark.parametrize("group_size", HQQ_SUPPORTED_GROUP_SIZES)
@pytest.mark.parametrize("mnk_factors", MNK_FACTORS)
@pytest.mark.parametrize("use_fp32_reduce", USE_FP32_REDUCE_OPTS)
def test_hqq_marlin_gemm(
    k_chunk,
    n_chunk,
    group_size,
    mnk_factors,
    use_fp32_reduce,
):
    m_factor, n_factor, k_factor = mnk_factors

    size_m = m_factor
    size_k = k_chunk * k_factor
    size_n = n_chunk * n_factor

    quant_type = scalar_types.uint4

    a_input = rand_data((size_m, size_k))
    dev = a_input.device

    b_weight = torch.randint(0, 10, (size_n, size_k), dtype=torch.uint8, device=dev)
    scale = rand_data((size_n, size_k // group_size))
    zero = rand_data((size_n, size_k // group_size))

    gptq_w_q = gptq_pack(b_weight.transpose(1, 0), 4, size_k, size_n)

    sort_indices = torch.empty(0, dtype=torch.int, device=dev)
    marlin_w_q = quantization.gptq_marlin_repack(gptq_w_q, sort_indices, size_k, size_n, 4).to(
        dev
    )
    marlin_s = marlin_permute_scales(
        scale.transpose(1, 0), size_k, size_n, group_size
    ).to(dev)
    marlin_zp = marlin_permute_scales(
        zero.transpose(1, 0), size_k, size_n, group_size
    ).to(dev)

    g_idx = marlin_make_empty_g_idx(dev)
    g_idx_sort_indices = marlin_make_empty_g_idx(dev)

    workspace = MarlinWorkspace(
        size_n, GPTQ_MARLIN_MIN_THREAD_N, GPTQ_MARLIN_MAX_PARALLEL
    )

    output = quantization.gptq_marlin_gemm(
        a_input,
        marlin_w_q,
        marlin_s,
        marlin_zp,
        g_idx,
        g_idx_sort_indices,
        workspace.scratch,
        quant_type,
        a_input.shape[0],
        b_weight.shape[0],
        a_input.shape[1],
        is_k_full=True,
        has_zp=True,
        use_fp32_reduce=use_fp32_reduce,
        is_zp_float=True,
    )

    b_flat = b_weight.reshape(-1, group_size)
    zp_flat = zero.reshape(-1, 1)
    s_flat = scale.reshape(-1, 1)
    dequant = (b_flat - zp_flat) * s_flat

    output_ref = torch.matmul(a_input, dequant.reshape(b_weight.shape).transpose(1, 0))

    torch.cuda.synchronize()

    max_diff = compute_max_diff(output, output_ref)

    assert max_diff < 0.04


@pytest.mark.skipif(
    capability < 80,
    reason="Marlin is not supported on this GPU type.",
)
@pytest.mark.parametrize("k_chunk", MARLIN_K_CHUNKS)
@pytest.mark.parametrize("n_chunk", MARLIN_N_CHUNKS)
@pytest.mark.parametrize("num_bits", MARLIN_QQQ_SUPPORTED_NUM_BITS)
@pytest.mark.parametrize("group_size", MARLIN_QQQ_SUPPORTED_GROUP_SIZES)
@pytest.mark.parametrize("mnk_factors", MNK_FACTORS)
def test_marlin_qqq_gemm(
    k_chunk,
    n_chunk,
    num_bits,
    group_size,
    mnk_factors,
):
    int8_traits = torch.iinfo(torch.int8)
    m_factor, n_factor, k_factor = mnk_factors

    size_m = m_factor
    size_k = k_chunk * k_factor
    size_n = n_chunk * n_factor

    a_input = rand_data((size_m, size_k))
    b_weight = rand_data((size_k, size_n))

    # Quantize activations
    s_a = (
        a_input.abs().max(dim=-1, keepdim=True)[0].div(int8_traits.max).to(torch.float)
    )
    q_a = (a_input / s_a).round().clamp(int8_traits.min, int8_traits.max).to(torch.int8)

    # Quantize weights
    w_ref, marlin_qqq_q_w, marlin_qqq_s_group, marlin_qqq_s_channel = (
        marlin_qqq_quantize(b_weight, num_bits, group_size)
    )

    workspace = MarlinWorkspace(
        size_n, MARLIN_QQQ_MIN_THREAD_N, MARLIN_QQQ_MAX_PARALLEL
    )

    opcheck(
        quantization._ops.ops.marlin_qqq_gemm,
        (
            q_a,
            marlin_qqq_q_w,
            s_a,
            marlin_qqq_s_channel,
            marlin_qqq_s_group,
            workspace.scratch,
            a_input.shape[0],
            b_weight.shape[1],
            a_input.shape[1],
        ),
    )

    output = quantization.marlin_qqq_gemm(
        q_a,
        marlin_qqq_q_w,
        s_a,
        marlin_qqq_s_channel,
        marlin_qqq_s_group,
        workspace.scratch,
        a_input.shape[0],
        b_weight.shape[1],
        a_input.shape[1],
    )
    output_ref = torch.matmul(q_a.half() * s_a.half(), w_ref)

    torch.cuda.synchronize()

    max_diff = compute_max_diff(output, output_ref)

    assert max_diff < 0.04


def test_marlin_gemm_opcheck():
    size_m = 2048
    size_n = 4096
    size_k = 4096
    a = torch.rand((size_m, size_n), device="cuda", dtype=torch.float16)
    w = torch.randint(-5, 5, (256, 8192), device="cuda", dtype=torch.int32)
    s = torch.full((32, size_k), 0.125, device="cuda", dtype=torch.float16)
    wk = MarlinWorkspace(
        size_n, GPTQ_MARLIN_MIN_THREAD_N, GPTQ_MARLIN_MAX_PARALLEL
    ).scratch
    x = quantization._ops.ops.marlin_gemm(a, w, s, wk, size_m, size_n, size_k)
    y = quantization._ops.ops.marlin_gemm(a, w, s, wk, size_m, size_n, size_k)
    torch.testing.assert_close(x, y)
    opcheck(quantization._ops.ops.marlin_gemm, (a, w, s, wk, size_m, size_n, size_k))