File size: 1,732 Bytes
8aa00a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
/*
* Adapted from
* https://github.com/NVIDIA/FasterTransformer/blob/release/v5.3_tag/src/fastertransformer/kernels/decoder_masked_multihead_attention_utils.h
* Copyright (c) 2023, The vLLM team.
* Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <stdint.h>
namespace vllm {
// A vector type to store Q, K, V elements.
template <typename T, int VEC_SIZE>
struct Vec {};
// A vector type to store FP32 accumulators.
template <typename T>
struct FloatVec {};
// Template vector operations.
template <typename Acc, typename A, typename B>
inline __device__ Acc mul(A a, B b);
template <typename T>
inline __device__ float sum(T v);
template <typename T>
inline __device__ float dot(T a, T b) {
return sum(mul<T, T, T>(a, b));
}
template <typename A, typename T>
inline __device__ float dot(T a, T b) {
return sum(mul<A, T, T>(a, b));
}
template <typename T>
inline __device__ void zero(T& dst) {
constexpr int WORDS = sizeof(T) / 4;
union {
T raw;
uint32_t words[WORDS];
} tmp;
#pragma unroll
for (int ii = 0; ii < WORDS; ++ii) {
tmp.words[ii] = 0u;
}
dst = tmp.raw;
}
} // namespace vllm
|