File size: 12,263 Bytes
8aa00a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
/*
 * Adapted from
 * https://github.com/NVIDIA/FasterTransformer/blob/release/v5.3_tag/src/fastertransformer/kernels/decoder_masked_multihead_attention/decoder_masked_multihead_attention_template.hpp
 * and
 * https://github.com/NVIDIA/FasterTransformer/blob/release/v5.3_tag/src/fastertransformer/kernels/decoder_masked_multihead_attention_utils.h
 * Copyright (c) 2023, The vLLM team.
 * Copyright (c) 2020-2023, NVIDIA CORPORATION.  All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
#pragma once

#include "attention_generic.cuh"
#include "dtype_float32.cuh"

#ifndef USE_ROCM
  #include <cuda_bf16.h>
  #include <cuda_fp16.h>
#else
  #include <hip/hip_bf16.h>
  #include <hip/hip_fp16.h>

typedef __hip_bfloat162 __nv_bfloat162;
typedef __hip_bfloat16 __nv_bfloat16;
#endif

#include <stdint.h>

namespace vllm {

// Define custom BF16 vector data types.
struct bf16_4_t {
  __nv_bfloat162 x;
  __nv_bfloat162 y;
};

struct bf16_8_t {
  __nv_bfloat162 x;
  __nv_bfloat162 y;
  __nv_bfloat162 z;
  __nv_bfloat162 w;
};

// BF16 vector types for Q, K, V.
template <>
struct Vec<__nv_bfloat16, 1> {
  using Type = __nv_bfloat16;
};
template <>
struct Vec<__nv_bfloat16, 2> {
  using Type = __nv_bfloat162;
};
template <>
struct Vec<__nv_bfloat16, 4> {
  using Type = bf16_4_t;
};
template <>
struct Vec<__nv_bfloat16, 8> {
  using Type = bf16_8_t;
};

// FP32 accumulator vector types corresponding to Vec.
template <>
struct FloatVec<__nv_bfloat16> {
  using Type = float;
};
template <>
struct FloatVec<__nv_bfloat162> {
  using Type = float2;
};
template <>
struct FloatVec<bf16_4_t> {
  using Type = Float4_;
};
template <>
struct FloatVec<bf16_8_t> {
  using Type = Float8_;
};

// Utility functions for type conversions.
inline __device__ float2 bf1622float2(const __nv_bfloat162 val) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
  assert(false);
#else
  return __bfloat1622float2(val);
#endif
  __builtin_unreachable();  // Suppress missing return statement warning
}

inline __device__ __nv_bfloat162 bf162bf162(const __nv_bfloat16 val) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
  assert(false);
#else
  return __bfloat162bfloat162(val);
#endif
  __builtin_unreachable();  // Suppress missing return statement warning
}

// Vector addition.
inline __device__ __nv_bfloat16 add(__nv_bfloat16 a, __nv_bfloat16 b) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
  assert(false);
#else
  #ifndef USE_ROCM
  return a + b;
  #else
  return __hadd(a, b);
  #endif
#endif
  __builtin_unreachable();  // Suppress missing return statement warning
}

inline __device__ __nv_bfloat162 add(__nv_bfloat162 a, __nv_bfloat162 b) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
  assert(false);
#else
  return __hadd2(a, b);
#endif
  __builtin_unreachable();  // Suppress missing return statement warning
}

inline __device__ bf16_4_t add(bf16_4_t a, bf16_4_t b) {
  bf16_4_t c;
  c.x = add(a.x, b.x);
  c.y = add(a.y, b.y);
  return c;
}

inline __device__ bf16_8_t add(bf16_8_t a, bf16_8_t b) {
  bf16_8_t c;
  c.x = add(a.x, b.x);
  c.y = add(a.y, b.y);
  c.z = add(a.z, b.z);
  c.w = add(a.w, b.w);
  return c;
}

inline __device__ float2 add(__nv_bfloat162 a, float2 fb) {
  float2 fa = bf1622float2(a);
  return add(fa, fb);
}

inline __device__ Float4_ add(bf16_4_t a, Float4_ fb) {
  Float4_ fc;
  fc.x = add(a.x, fb.x);
  fc.y = add(a.y, fb.y);
  return fc;
}

inline __device__ Float8_ add(bf16_8_t a, Float8_ fb) {
  Float8_ fc;
  fc.x = add(a.x, fb.x);
  fc.y = add(a.y, fb.y);
  fc.z = add(a.z, fb.z);
  fc.w = add(a.w, fb.w);
  return fc;
}

// Vector multiplication.
template <>
inline __device__ __nv_bfloat16 mul(__nv_bfloat16 a, __nv_bfloat16 b) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
  assert(false);
#else
  return __hmul(a, b);
#endif
  __builtin_unreachable();  // Suppress missing return statement warning
}

template <>
inline __device__ __nv_bfloat162 mul(__nv_bfloat162 a, __nv_bfloat162 b) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
  assert(false);
#else
  return __hmul2(a, b);
#endif
  __builtin_unreachable();  // Suppress missing return statement warning
}

template <>
inline __device__ __nv_bfloat162 mul(__nv_bfloat16 a, __nv_bfloat162 b) {
  return mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(bf162bf162(a), b);
}

template <>
inline __device__ bf16_4_t mul(bf16_4_t a, bf16_4_t b) {
  bf16_4_t c;
  c.x = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(a.x, b.x);
  c.y = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(a.y, b.y);
  return c;
}

template <>
inline __device__ bf16_4_t mul(__nv_bfloat16 a, bf16_4_t b) {
  __nv_bfloat162 s = bf162bf162(a);
  bf16_4_t c;
  c.x = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(s, b.x);
  c.y = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(s, b.y);
  return c;
}

template <>
inline __device__ bf16_8_t mul(bf16_8_t a, bf16_8_t b) {
  bf16_8_t c;
  c.x = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(a.x, b.x);
  c.y = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(a.y, b.y);
  c.z = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(a.z, b.z);
  c.w = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(a.w, b.w);
  return c;
}

template <>
inline __device__ bf16_8_t mul(__nv_bfloat16 a, bf16_8_t b) {
  __nv_bfloat162 s = bf162bf162(a);
  bf16_8_t c;
  c.x = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(s, b.x);
  c.y = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(s, b.y);
  c.z = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(s, b.z);
  c.w = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(s, b.w);
  return c;
}

template <>
inline __device__ float mul(__nv_bfloat16 a, __nv_bfloat16 b) {
  float fa = __bfloat162float(a);
  float fb = __bfloat162float(b);
  return fa * fb;
}

template <>
inline __device__ float2 mul(__nv_bfloat162 a, __nv_bfloat162 b) {
  float2 fa = bf1622float2(a);
  float2 fb = bf1622float2(b);
  return mul<float2, float2, float2>(fa, fb);
}

template <>
inline __device__ float2 mul(__nv_bfloat16 a, __nv_bfloat162 b) {
  return mul<float2, __nv_bfloat162, __nv_bfloat162>(bf162bf162(a), b);
}

template <>
inline __device__ Float4_ mul(bf16_4_t a, bf16_4_t b) {
  Float4_ fc;
  fc.x = mul<float2, __nv_bfloat162, __nv_bfloat162>(a.x, b.x);
  fc.y = mul<float2, __nv_bfloat162, __nv_bfloat162>(a.y, b.y);
  return fc;
}

template <>
inline __device__ Float4_ mul(__nv_bfloat16 a, bf16_4_t b) {
  __nv_bfloat162 s = bf162bf162(a);
  Float4_ fc;
  fc.x = mul<float2, __nv_bfloat162, __nv_bfloat162>(s, b.x);
  fc.y = mul<float2, __nv_bfloat162, __nv_bfloat162>(s, b.y);
  return fc;
}

template <>
inline __device__ Float8_ mul(bf16_8_t a, bf16_8_t b) {
  Float8_ fc;
  fc.x = mul<float2, __nv_bfloat162, __nv_bfloat162>(a.x, b.x);
  fc.y = mul<float2, __nv_bfloat162, __nv_bfloat162>(a.y, b.y);
  fc.z = mul<float2, __nv_bfloat162, __nv_bfloat162>(a.z, b.z);
  fc.w = mul<float2, __nv_bfloat162, __nv_bfloat162>(a.w, b.w);
  return fc;
}

template <>
inline __device__ Float8_ mul(__nv_bfloat16 a, bf16_8_t b) {
  __nv_bfloat162 s = bf162bf162(a);
  Float8_ fc;
  fc.x = mul<float2, __nv_bfloat162, __nv_bfloat162>(s, b.x);
  fc.y = mul<float2, __nv_bfloat162, __nv_bfloat162>(s, b.y);
  fc.z = mul<float2, __nv_bfloat162, __nv_bfloat162>(s, b.z);
  fc.w = mul<float2, __nv_bfloat162, __nv_bfloat162>(s, b.w);
  return fc;
}

// Vector fused multiply-add.
inline __device__ __nv_bfloat162 fma(__nv_bfloat162 a, __nv_bfloat162 b,
                                     __nv_bfloat162 c) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
  assert(false);
#else
  return __hfma2(a, b, c);
#endif
  __builtin_unreachable();  // Suppress missing return statement warning
}

inline __device__ __nv_bfloat162 fma(__nv_bfloat16 a, __nv_bfloat162 b,
                                     __nv_bfloat162 c) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
  assert(false);
#else
  return __hfma2(bf162bf162(a), b, c);
#endif
  __builtin_unreachable();  // Suppress missing return statement warning
}

inline __device__ bf16_4_t fma(bf16_4_t a, bf16_4_t b, bf16_4_t c) {
  bf16_4_t d;
  d.x = fma(a.x, b.x, c.x);
  d.y = fma(a.y, b.y, c.y);
  return d;
}

inline __device__ bf16_4_t fma(__nv_bfloat16 a, bf16_4_t b, bf16_4_t c) {
  __nv_bfloat162 s = bf162bf162(a);
  bf16_4_t d;
  d.x = fma(s, b.x, c.x);
  d.y = fma(s, b.y, c.y);
  return d;
}

inline __device__ bf16_8_t fma(bf16_8_t a, bf16_8_t b, bf16_8_t c) {
  bf16_8_t d;
  d.x = fma(a.x, b.x, c.x);
  d.y = fma(a.y, b.y, c.y);
  d.z = fma(a.z, b.z, c.z);
  d.w = fma(a.w, b.w, c.w);
  return d;
}

inline __device__ bf16_8_t fma(__nv_bfloat16 a, bf16_8_t b, bf16_8_t c) {
  __nv_bfloat162 s = bf162bf162(a);
  bf16_8_t d;
  d.x = fma(s, b.x, c.x);
  d.y = fma(s, b.y, c.y);
  d.z = fma(s, b.z, c.z);
  d.w = fma(s, b.w, c.w);
  return d;
}

inline __device__ float fma(__nv_bfloat16 a, __nv_bfloat16 b, float fc) {
  return __bfloat162float(a) * __bfloat162float(b) + fc;
}

inline __device__ float2 fma(__nv_bfloat162 a, __nv_bfloat162 b, float2 fc) {
  float2 fa = bf1622float2(a);
  float2 fb = bf1622float2(b);
  return fma(fa, fb, fc);
}

inline __device__ float2 fma(__nv_bfloat16 a, __nv_bfloat162 b, float2 fc) {
  return fma(bf162bf162(a), b, fc);
}

inline __device__ Float4_ fma(bf16_4_t a, bf16_4_t b, Float4_ fc) {
  Float4_ fd;
  fd.x = fma(a.x, b.x, fc.x);
  fd.y = fma(a.y, b.y, fc.y);
  return fd;
}

inline __device__ Float4_ fma(__nv_bfloat16 a, bf16_4_t b, Float4_ fc) {
  __nv_bfloat162 s = bf162bf162(a);
  Float4_ fd;
  fd.x = fma(s, b.x, fc.x);
  fd.y = fma(s, b.y, fc.y);
  return fd;
}

inline __device__ Float8_ fma(bf16_8_t a, bf16_8_t b, Float8_ fc) {
  Float8_ fd;
  fd.x = fma(a.x, b.x, fc.x);
  fd.y = fma(a.y, b.y, fc.y);
  fd.z = fma(a.z, b.z, fc.z);
  fd.w = fma(a.w, b.w, fc.w);
  return fd;
}

inline __device__ Float8_ fma(__nv_bfloat16 a, bf16_8_t b, Float8_ fc) {
  __nv_bfloat162 s = bf162bf162(a);
  Float8_ fd;
  fd.x = fma(s, b.x, fc.x);
  fd.y = fma(s, b.y, fc.y);
  fd.z = fma(s, b.z, fc.z);
  fd.w = fma(s, b.w, fc.w);
  return fd;
}

// Vector sum.
template <>
inline __device__ float sum(__nv_bfloat16 v) {
  return __bfloat162float(v);
}

template <>
inline __device__ float sum(__nv_bfloat162 v) {
  float2 vf = bf1622float2(v);
  return vf.x + vf.y;
}

template <>
inline __device__ float sum(bf16_4_t v) {
  return sum(v.x) + sum(v.y);
}

template <>
inline __device__ float sum(bf16_8_t v) {
  return sum(v.x) + sum(v.y) + sum(v.z) + sum(v.w);
}

// From float32 to bfloat16.
inline __device__ void from_float(__nv_bfloat16& dst, float src) {
  dst = __float2bfloat16(src);
}

inline __device__ void from_float(__nv_bfloat162& dst, float2 src) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
  assert(false);
#else
  dst = __float22bfloat162_rn(src);
#endif
}

inline __device__ void from_float(bf16_4_t& dst, Float4_ src) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
  assert(false);
#else
  dst.x = __float22bfloat162_rn(src.x);
  dst.y = __float22bfloat162_rn(src.y);
#endif
}

inline __device__ void from_float(bf16_8_t& dst, Float8_ src) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
  assert(false);
#else
  dst.x = __float22bfloat162_rn(src.x);
  dst.y = __float22bfloat162_rn(src.y);
  dst.z = __float22bfloat162_rn(src.z);
  dst.w = __float22bfloat162_rn(src.w);
#endif
}

// From bfloat16 to float32.
inline __device__ float to_float(__nv_bfloat16 u) {
  return __bfloat162float(u);
}

// Zero-out a variable.
inline __device__ void zero(__nv_bfloat16& dst) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
  assert(false);
#else
  // Same as CUDART_ZERO_BF16 introduced in CUDA 12.2.
  dst = __ushort_as_bfloat16((unsigned short)0x0000U);
#endif
}

}  // namespace vllm