File size: 18,590 Bytes
8aa00a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
/*
Fast Dequantization (Converting INT4/INT8/FP4/FP8 to FP16/BF16)

The process of fast dequantization can be summarized as a combination
of bitwise operations and floating-point computations:

weight =>(bit_op / bitwise operations)=>
f16_value =>(flop / floating-point computation)=>
dequantized_weight

Since the dequantized weights typically require subtracting the zero point and
applying a scale factor, the floating-point computation step can be fused with
the zero-point subtraction and scaling operations.

The following are the parts that need to be modified for the fused operation
of zero-point subtraction and scaling.

## INT4 => FP16/BF16 or INT8 => FP16

The floating-point computation is `__hsub2`

If has zero points:

    flop(bit_op(weight)) - flop(bit_op(zp))
  = sub(bit_op(weight), bias) - sub(bit_op(zp), bias)
  = bit_op(weight) - bit_op(zp)

so we don't need additional modification.

If has float zero points:

    flop(bit_op(weight)) - fzp
  = sub(bit_op(weight), bias) - fzp
  = bit_op(weight) - (fzp + bias)

where the `fzp + bias` can be computed at weight loading. But this
may have accuracy issue, so we should not use this in most cases.

If has not zero points:

    scale(flop(bit_op(weight)))
  = scale(sub(bit_op(weight), bias))
  = scale(bit_op(weight)) - scale(bias)
  = fma(bit_op(weight), scale_factor, scale(bias))

where the `scale(bias)` can be cached. But this may have accuracy issue,
so we should not use this in most cases.


## INT8 => BF16

INT8 => BF16 is a special case, it use byte_perm instead of flop.
We cannot fused byte_perm with scaling.


## FP4/FP8 => FP16/BF16

    scale(flop(bit_op(weight)))
  = scale(mul(bit_op(weight), multiplier))
  = mul(bit_op(weight), scale_factor * multiplier)

where `scale_factor * multiplier` can be computed at weight loading.

*/

#include "marlin_dtypes.cuh"

namespace MARLIN_NAMESPACE_NAME {

#if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 800
// Lookup-table based 3-input logical operation; explicitly used for
// dequantization as the compiler does not seem to automatically recognize it in
// all cases.
template <int lut>
__device__ inline int lop3(int a, int b, int c) {
  int res;
  asm volatile("lop3.b32 %0, %1, %2, %3, %4;\n"
               : "=r"(res)
               : "r"(a), "r"(b), "r"(c), "n"(lut));
  return res;
}

// Constructs destination register by taking bytes from 2 sources (based on
// mask)
template <int start_byte, int mask>
__device__ inline uint32_t prmt(uint32_t a) {
  uint32_t res;
  asm volatile("prmt.b32 %0, %1, %2, %3;\n"
               : "=r"(res)
               : "r"(a), "n"(start_byte), "n"(mask));
  return res;
}

template <typename scalar_t2, vllm::ScalarTypeId w_type_id,
          bool skip_flop = false>
__device__ inline void dequant(int q, scalar_t2* frag_b);

//
// Efficiently dequantize 4bit values packed in an int32 value into a full
// B-fragment of 4 fp16 values. We mostly follow the strategy in the link below,
// with some small changes:
// - FP16:
// https://github.com/NVIDIA/FasterTransformer/blob/release/v5.3_tag/src/fastertransformer/cutlass_extensions/include/cutlass_extensions/interleaved_numeric_conversion.h#L215-L287
// - BF16:
// https://github.com/NVIDIA/FasterTransformer/blob/release/v5.3_tag/src/fastertransformer/cutlass_extensions/include/cutlass_extensions/interleaved_numeric_conversion.h#L327-L385
//
template <>
__device__ inline void dequant<half2, vllm::kU4B8.id(), true>(int q,
                                                              half2* frag_b) {
  const int MASK = 0x000f000f;
  const int EX = 0x64006400;
  // Guarantee that the `(a & b) | c` operations are LOP3s.
  int lo = lop3<(0xf0 & 0xcc) | 0xaa>(q, MASK, EX);
  q >>= 4;
  int hi = lop3<(0xf0 & 0xcc) | 0xaa>(q, MASK, EX);

  frag_b[0] = *reinterpret_cast<half2*>(&lo);
  frag_b[1] = *reinterpret_cast<half2*>(&hi);
}

template <>
__device__ inline void dequant<half2, vllm::kU4B8.id(), false>(int q,
                                                               half2* frag_b) {
  const int LO = 0x000f000f;
  const int HI = 0x00f000f0;
  const int EX = 0x64006400;
  // Guarantee that the `(a & b) | c` operations are LOP3s.
  // clang-format off
  int lo = lop3<(0xf0 & 0xcc) | 0xaa>(q, LO, EX);
  int hi = lop3<(0xf0 & 0xcc) | 0xaa>(q, HI, EX);
  // clang-format on
  // We want signed int4 outputs, hence we fuse the `-8` symmetric zero point
  // directly into `SUB` and `ADD`.
  const int SUB = 0x64086408;
  const int MUL = 0x2c002c00;
  const int ADD = 0xd480d480;
  frag_b[0] = __hsub2(*reinterpret_cast<half2*>(&lo),
                      *reinterpret_cast<const half2*>(&SUB));
  frag_b[1] = __hfma2(*reinterpret_cast<half2*>(&hi),
                      *reinterpret_cast<const half2*>(&MUL),
                      *reinterpret_cast<const half2*>(&ADD));
}

template <>
__device__ inline void dequant<half2, vllm::kU4.id(), true>(int q,
                                                            half2* frag_b) {
  dequant<half2, vllm::kU4B8.id(), true>(q, frag_b);
}

template <>
__device__ inline void dequant<half2, vllm::kU4.id(), false>(int q,
                                                             half2* frag_b) {
  const int LO = 0x000f000f;
  const int HI = 0x00f000f0;
  const int EX = 0x64006400;
  // Guarantee that the `(a & b) | c` operations are LOP3s.
  // clang-format off
  int lo = lop3<(0xf0 & 0xcc) | 0xaa>(q, LO, EX);
  int hi = lop3<(0xf0 & 0xcc) | 0xaa>(q, HI, EX);
  // clang-format on
  // We want signed int4 outputs, hence we fuse the `-8` symmetric zero point
  // directly into `SUB` and `ADD`.
  const int SUB = 0x64006400;
  const int MUL = 0x2c002c00;
  const int ADD = 0xd400d400;
  frag_b[0] = __hsub2(*reinterpret_cast<half2*>(&lo),
                      *reinterpret_cast<const half2*>(&SUB));
  frag_b[1] = __hfma2(*reinterpret_cast<half2*>(&hi),
                      *reinterpret_cast<const half2*>(&MUL),
                      *reinterpret_cast<const half2*>(&ADD));
}

template <>
__device__ inline void dequant<nv_bfloat162, vllm::kU4B8.id(), true>(
    int q, nv_bfloat162* frag_b) {
  static constexpr uint32_t MASK = 0x000f000f;
  static constexpr uint32_t EX = 0x43004300;

  // Guarantee that the `(a & b) | c` operations are LOP3s.
  // clang-format off
  int lo = lop3<(0xf0 & 0xcc) | 0xaa>(q, MASK, EX);
  q >>= 4;
  int hi = lop3<(0xf0 & 0xcc) | 0xaa>(q, MASK, EX);
  // clang-format on

  frag_b[0] = *reinterpret_cast<nv_bfloat162*>(&lo);
  frag_b[1] = *reinterpret_cast<nv_bfloat162*>(&hi);
}

template <>
__device__ inline void dequant<nv_bfloat162, vllm::kU4B8.id(), false>(
    int q, nv_bfloat162* frag_b) {
  dequant<nv_bfloat162, vllm::kU4B8.id(), true>(q, frag_b);

  static constexpr uint32_t SUB = 0x43084308;

  frag_b[0] = __hsub2(frag_b[0], *reinterpret_cast<const nv_bfloat162*>(&SUB));
  frag_b[1] = __hsub2(frag_b[1], *reinterpret_cast<const nv_bfloat162*>(&SUB));
}

template <>
__device__ inline void dequant<nv_bfloat162, vllm::kU4.id(), true>(
    int q, nv_bfloat162* frag_b) {
  dequant<nv_bfloat162, vllm::kU4B8.id(), true>(q, frag_b);
}

template <>
__device__ inline void dequant<nv_bfloat162, vllm::kU4.id(), false>(
    int q, nv_bfloat162* frag_b) {
  dequant<nv_bfloat162, vllm::kU4.id(), true>(q, frag_b);

  static constexpr uint32_t SUB = 0x43004300;

  frag_b[0] = __hsub2(frag_b[0], *reinterpret_cast<const nv_bfloat162*>(&SUB));
  frag_b[1] = __hsub2(frag_b[1], *reinterpret_cast<const nv_bfloat162*>(&SUB));
}

//
// Fast Int8ToFp16/Int8ToBf16: Efficiently dequantize 8bit int values to fp16 or
// bf16 Reference:
// - FP16:
// https://github.com/NVIDIA/FasterTransformer/blob/release/v5.3_tag/src/fastertransformer/cutlass_extensions/include/cutlass_extensions/interleaved_numeric_conversion.h#L53-L85
// - BF16:
// https://github.com/NVIDIA/FasterTransformer/blob/release/v5.3_tag/src/fastertransformer/cutlass_extensions/include/cutlass_extensions/interleaved_numeric_conversion.h#L125-L175
//
template <>
__device__ inline void dequant<half2, vllm::kU8B128.id(), true>(int q,
                                                                half2* frag_b) {
  static constexpr uint32_t mask_for_elt_01 = 0x5250;
  static constexpr uint32_t mask_for_elt_23 = 0x5351;
  static constexpr uint32_t start_byte_for_fp16 = 0x64646464;

  uint32_t lo = prmt<start_byte_for_fp16, mask_for_elt_01>(q);
  uint32_t hi = prmt<start_byte_for_fp16, mask_for_elt_23>(q);

  frag_b[0] = *reinterpret_cast<half2*>(&lo);
  frag_b[1] = *reinterpret_cast<half2*>(&hi);
}

template <>
__device__ inline void dequant<half2, vllm::kU8B128.id(), false>(
    int q, half2* frag_b) {
  dequant<half2, vllm::kU8B128.id(), true>(q, frag_b);

  static constexpr uint32_t I8s_TO_F16s_MAGIC_NUM = 0x64806480;
  frag_b[0] = __hsub2(frag_b[0],
                      *reinterpret_cast<const half2*>(&I8s_TO_F16s_MAGIC_NUM));
  frag_b[1] = __hsub2(frag_b[1],
                      *reinterpret_cast<const half2*>(&I8s_TO_F16s_MAGIC_NUM));
}

template <>
__device__ inline void dequant<half2, vllm::kU8.id(), true>(int q,
                                                            half2* frag_b) {
  dequant<half2, vllm::kU8B128.id(), true>(q, frag_b);
}

template <>
__device__ inline void dequant<half2, vllm::kU8.id(), false>(int q,
                                                             half2* frag_b) {
  dequant<half2, vllm::kU8.id(), true>(q, frag_b);

  static constexpr uint32_t I8s_TO_F16s_MAGIC_NUM = 0x64006400;
  frag_b[0] = __hsub2(frag_b[0],
                      *reinterpret_cast<const half2*>(&I8s_TO_F16s_MAGIC_NUM));
  frag_b[1] = __hsub2(frag_b[1],
                      *reinterpret_cast<const half2*>(&I8s_TO_F16s_MAGIC_NUM));
}

template <>
__device__ inline void dequant<nv_bfloat162, vllm::kU8B128.id(), false>(
    int q, nv_bfloat162* frag_b) {
  float fp32_intermediates[4];
  uint32_t* fp32_intermediates_casted =
      reinterpret_cast<uint32_t*>(fp32_intermediates);

  static constexpr uint32_t fp32_base = 0x4B000000;
  fp32_intermediates_casted[0] = __byte_perm(q, fp32_base, 0x7650);
  fp32_intermediates_casted[1] = __byte_perm(q, fp32_base, 0x7652);
  fp32_intermediates_casted[2] = __byte_perm(q, fp32_base, 0x7651);
  fp32_intermediates_casted[3] = __byte_perm(q, fp32_base, 0x7653);

  fp32_intermediates[0] -= 8388736.f;
  fp32_intermediates[1] -= 8388736.f;
  fp32_intermediates[2] -= 8388736.f;
  fp32_intermediates[3] -= 8388736.f;

  uint32_t* bf16_result_ptr = reinterpret_cast<uint32_t*>(frag_b);
  bf16_result_ptr[0] = __byte_perm(fp32_intermediates_casted[0],
                                   fp32_intermediates_casted[1], 0x7632);
  bf16_result_ptr[1] = __byte_perm(fp32_intermediates_casted[2],
                                   fp32_intermediates_casted[3], 0x7632);
}

template <>
__device__ inline void dequant<nv_bfloat162, vllm::kU8.id(), false>(
    int q, nv_bfloat162* frag_b) {
  float fp32_intermediates[4];
  uint32_t* fp32_intermediates_casted =
      reinterpret_cast<uint32_t*>(fp32_intermediates);

  static constexpr uint32_t fp32_base = 0x4B000000;
  fp32_intermediates_casted[0] = __byte_perm(q, fp32_base, 0x7650);
  fp32_intermediates_casted[1] = __byte_perm(q, fp32_base, 0x7652);
  fp32_intermediates_casted[2] = __byte_perm(q, fp32_base, 0x7651);
  fp32_intermediates_casted[3] = __byte_perm(q, fp32_base, 0x7653);

  fp32_intermediates[0] -= 8388608.f;
  fp32_intermediates[1] -= 8388608.f;
  fp32_intermediates[2] -= 8388608.f;
  fp32_intermediates[3] -= 8388608.f;

  uint32_t* bf16_result_ptr = reinterpret_cast<uint32_t*>(frag_b);
  bf16_result_ptr[0] = __byte_perm(fp32_intermediates_casted[0],
                                   fp32_intermediates_casted[1], 0x7632);
  bf16_result_ptr[1] = __byte_perm(fp32_intermediates_casted[2],
                                   fp32_intermediates_casted[3], 0x7632);
}

template <>
__device__ inline void dequant<half2, vllm::kFE4M3fn.id(), true>(
    int q, half2* frag_b) {
  // Constants for FP8 (E4M3) and FP16 formats
  constexpr int FP8_EXPONENT = 4, FP16_EXPONENT = 5;
  constexpr int RIGHT_SHIFT = FP16_EXPONENT - FP8_EXPONENT;
  constexpr int MASK = 0x7F007F00;

  // Extract and shift FP8 values to FP16 format
  int Out1 = (q & 0x80008000) | ((q & MASK) >> RIGHT_SHIFT);
  q <<= 8;
  int Out2 = (q & 0x80008000) | ((q & MASK) >> RIGHT_SHIFT);

  // Note: reverse indexing is intentional because weights are permuted
  frag_b[1] = *reinterpret_cast<const half2*>(&Out1);
  frag_b[0] = *reinterpret_cast<const half2*>(&Out2);
}

template <>
__device__ inline void dequant<half2, vllm::kFE4M3fn.id(), false>(
    int q, half2* frag_b) {
  dequant<half2, vllm::kFE4M3fn.id(), true>(q, frag_b);

  // Constants for FP8 (E4M3) and FP16 formats
  constexpr int FP8_EXPONENT = 4, FP16_EXPONENT = 5;

  // Construct and apply exponent bias
  constexpr int BIAS_OFFSET =
      (1 << (FP16_EXPONENT - 1)) - (1 << (FP8_EXPONENT - 1));
  const half2 bias_reg = __float2half2_rn(float(1 << BIAS_OFFSET));

  // Convert to half2 and apply bias
  frag_b[1] = __hmul2(frag_b[1], bias_reg);
  frag_b[0] = __hmul2(frag_b[0], bias_reg);
}

template <>
__device__ inline void dequant<nv_bfloat162, vllm::kFE4M3fn.id(), true>(
    int q, nv_bfloat162* frag_b) {
  // Constants for FP8 (E4M3) and BF16 formats
  constexpr int FP8_EXPONENT = 4, BF16_EXPONENT = 8;
  constexpr int RIGHT_SHIFT = BF16_EXPONENT - FP8_EXPONENT;

  constexpr int MASK = 0x7F007F00;

  // Extract and shift FP8 values to BF16 format
  int Out1 = (q & 0x80008000) | ((q & MASK) >> RIGHT_SHIFT);
  q <<= 8;
  int Out2 = (q & 0x80008000) | ((q & MASK) >> RIGHT_SHIFT);

  // Note: reverse indexing is intentional because weights are permuted
  frag_b[1] = *reinterpret_cast<const nv_bfloat162*>(&Out1);
  frag_b[0] = *reinterpret_cast<const nv_bfloat162*>(&Out2);
}

template <>
__device__ inline void dequant<nv_bfloat162, vllm::kFE4M3fn.id(), false>(
    int q, nv_bfloat162* frag_b) {
  dequant<nv_bfloat162, vllm::kFE4M3fn.id(), true>(q, frag_b);

  // Constants for FP8 (E4M3) and BF16 formats
  constexpr int FP8_EXPONENT = 4, BF16_EXPONENT = 8;

  // Construct and apply exponent bias
  constexpr int BIAS_OFFSET =
      (1 << (BF16_EXPONENT - 1)) - (1 << (FP8_EXPONENT - 1));
  // Add 127 (float exponent bias) to BIAS_OFFSET and shift to float exponent
  // position
  constexpr uint32_t BIAS = (BIAS_OFFSET + 127) << 23;
  const nv_bfloat162 bias_reg =
      __float2bfloat162_rn(*reinterpret_cast<const float*>(&BIAS));

  // Convert to bfloat162 and apply bias
  frag_b[1] = __hmul2(frag_b[1], bias_reg);
  frag_b[0] = __hmul2(frag_b[0], bias_reg);
}

template <>
__device__ inline void dequant<half2, vllm::kFE2M1f.id(), true>(int q,
                                                                half2* frag_b) {
  // Constants for FP4 (E2M1) and FP16 formats
  constexpr int FP4_EXPONENT = 2, FP16_EXPONENT = 5;
  constexpr int RIGHT_SHIFT = FP16_EXPONENT - FP4_EXPONENT;
  constexpr int MASK = 0x70007000;

  // Extract and shift FP4 values to FP16 format
  int Out1 = (q & 0x80008000) | ((q & MASK) >> RIGHT_SHIFT);
  q <<= 4;
  int Out2 = (q & 0x80008000) | ((q & MASK) >> RIGHT_SHIFT);

  // Note: reverse indexing is intentional because weights are permuted
  frag_b[1] = *reinterpret_cast<const half2*>(&Out1);
  frag_b[0] = *reinterpret_cast<const half2*>(&Out2);
}

template <>
__device__ inline void dequant<half2, vllm::kFE2M1f.id(), false>(
    int q, half2* frag_b) {
  dequant<half2, vllm::kFE2M1f.id(), true>(q, frag_b);

  // Constants for FP4 (E2M1) and FP16 formats
  constexpr int FP4_EXPONENT = 2, FP16_EXPONENT = 5;

  // Construct and apply exponent bias
  constexpr int BIAS_OFFSET =
      (1 << (FP16_EXPONENT - 1)) - (1 << (FP4_EXPONENT - 1));
  const half2 bias_reg = __float2half2_rn(float(1 << BIAS_OFFSET));

  // Convert to half2 and apply bias
  frag_b[1] = __hmul2(frag_b[1], bias_reg);
  frag_b[0] = __hmul2(frag_b[0], bias_reg);
}

template <>
__device__ inline void dequant<nv_bfloat162, vllm::kFE2M1f.id(), true>(
    int q, nv_bfloat162* frag_b) {
  // Constants for FP4 (E2M1) and FP16 formats
  constexpr int FP4_EXPONENT = 2, BF16_EXPONENT = 8;
  constexpr int RIGHT_SHIFT = BF16_EXPONENT - FP4_EXPONENT;
  constexpr int MASK = 0x70007000;

  // Extract and shift FP4 values to FP16 format
  int Out1 = (q & 0x80008000) | ((q & MASK) >> RIGHT_SHIFT);
  q <<= 4;
  int Out2 = (q & 0x80008000) | ((q & MASK) >> RIGHT_SHIFT);

  // Note: reverse indexing is intentional because weights are permuted
  frag_b[1] = *reinterpret_cast<const nv_bfloat162*>(&Out1);
  frag_b[0] = *reinterpret_cast<const nv_bfloat162*>(&Out2);
}

template <>
__device__ inline void dequant<nv_bfloat162, vllm::kFE2M1f.id(), false>(
    int q, nv_bfloat162* frag_b) {
  dequant<nv_bfloat162, vllm::kFE2M1f.id(), true>(q, frag_b);

  // Constants for FP4 (E2M1) and BF16 formats
  constexpr int FP4_EXPONENT = 2, BF16_EXPONENT = 8;

  // Construct and apply exponent bias
  constexpr int BIAS_OFFSET =
      (1 << (BF16_EXPONENT - 1)) - (1 << (FP4_EXPONENT - 1));
  // Add 127 (float exponent bias) to BIAS_OFFSET and shift to float exponent
  // position
  constexpr uint32_t BIAS = (BIAS_OFFSET + 127) << 23;
  const nv_bfloat162 bias_reg =
      __float2bfloat162_rn(*reinterpret_cast<const float*>(&BIAS));

  // Convert to half2 and apply bias
  frag_b[1] = __hmul2(frag_b[1], bias_reg);
  frag_b[0] = __hmul2(frag_b[0], bias_reg);
}

template <typename scalar_t2>
__device__ inline void dequant_fp8_scales(int q, scalar_t2* frag_b);

template <>
__device__ inline void dequant_fp8_scales<half2>(int q, half2* frag_b) {
  int Out1 = (q & 0xFF00FF00) >> 1;
  ;
  q <<= 8;
  int Out2 = (q & 0xFF00FF00) >> 1;

  // Note: reverse indexing is intentional because weights are permuted
  frag_b[1] = *reinterpret_cast<const half2*>(&Out1);
  frag_b[0] = *reinterpret_cast<const half2*>(&Out2);
};

template <>
__device__ inline void dequant_fp8_scales<nv_bfloat162>(int q,
                                                        nv_bfloat162* frag_b) {
  constexpr int FP8_EXPONENT = 4, BF16_EXPONENT = 8;
  constexpr int RIGHT_SHIFT = BF16_EXPONENT - FP8_EXPONENT;
  constexpr int MASK = 0x7F007F00;

  // Extract and shift FP8 values to BF16 format
  int Out1 = ((q & 0x80008000) >> 1) | ((q & MASK) >> RIGHT_SHIFT);
  q <<= 8;
  int Out2 = ((q & 0x80008000) >> 1) | ((q & MASK) >> RIGHT_SHIFT);

  // Note: reverse indexing is intentional because weights are permuted
  frag_b[1] = *reinterpret_cast<const nv_bfloat162*>(&Out1);
  frag_b[0] = *reinterpret_cast<const nv_bfloat162*>(&Out2);
}

#endif

}  // namespace MARLIN_NAMESPACE_NAME