quantization / ext-torch /torch_binding.cpp
danieldk's picture
danieldk HF staff
Add full Marlin support and tests for Marlin/CUTLASS
165b25c
raw
history blame
8.25 kB
#include <torch/library.h>
#include "core/registration.h"
#include "torch_binding.h"
TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
// CUTLASS w8a8 GEMM, supporting symmetric per-tensor or per-row/column
// quantization, as well as bias
ops.def(
"cutlass_scaled_mm(Tensor! out, Tensor a,"
" Tensor b, Tensor a_scales,"
" Tensor b_scales, Tensor? bias) -> ()");
ops.impl("cutlass_scaled_mm", torch::kCUDA, &cutlass_scaled_mm);
// CUTLASS w8a8 GEMM, supporting asymmetric per-tensor or per-row/column
// quantization.
ops.def(
"cutlass_scaled_mm_azp(Tensor! out, Tensor a,"
" Tensor b, Tensor a_scales,"
" Tensor b_scales, Tensor azp_adj,"
" Tensor? azp, Tensor? bias) -> ()");
ops.impl("cutlass_scaled_mm_azp", torch::kCUDA, &cutlass_scaled_mm_azp);
// Check if cutlass scaled_mm is supported for CUDA devices of the given
// capability
ops.def("cutlass_scaled_mm_supports_fp8(int cuda_device_capability) -> bool");
ops.impl("cutlass_scaled_mm_supports_fp8", &cutlass_scaled_mm_supports_fp8);
// Compute FP8 quantized tensor for given scaling factor.
ops.def(
"static_scaled_fp8_quant(Tensor! result, Tensor input, Tensor scale) -> "
"()");
ops.impl("static_scaled_fp8_quant", torch::kCUDA, &static_scaled_fp8_quant);
// Compute dynamic-per-tensor FP8 quantized tensor and scaling factor.
ops.def(
"dynamic_scaled_fp8_quant(Tensor! result, Tensor input, Tensor! scale) "
"-> "
"()");
ops.impl("dynamic_scaled_fp8_quant", torch::kCUDA, &dynamic_scaled_fp8_quant);
// Compute dynamic-per-token FP8 quantized tensor and scaling factor.
ops.def(
"dynamic_per_token_scaled_fp8_quant(Tensor! result, Tensor input, "
"Tensor! scale, Tensor? scale_ub) -> "
"()");
ops.impl("dynamic_per_token_scaled_fp8_quant", torch::kCUDA,
&dynamic_per_token_scaled_fp8_quant);
// Compute int8 quantized tensor for given scaling factor.
ops.def(
"static_scaled_int8_quant(Tensor! result, Tensor input, Tensor scale,"
"Tensor? azp) -> ()");
ops.impl("static_scaled_int8_quant", torch::kCUDA, &static_scaled_int8_quant);
// Compute int8 quantized tensor and scaling factor
ops.def(
"dynamic_scaled_int8_quant(Tensor! result, Tensor input, Tensor! scale, "
"Tensor!? azp) -> ()");
ops.impl("dynamic_scaled_int8_quant", torch::kCUDA,
&dynamic_scaled_int8_quant);
// fp8_marlin Optimized Quantized GEMM for FP8 weight-only.
ops.def(
"fp8_marlin_gemm(Tensor a, Tensor b_q_weight, Tensor b_scales, "
"Tensor! workspace, int num_bits, SymInt size_m, SymInt size_n, "
"SymInt size_k) -> Tensor");
// awq_marlin repack from AWQ.
ops.def(
"awq_marlin_repack(Tensor b_q_weight, SymInt size_k, "
"SymInt size_n, int num_bits) -> Tensor");
// gptq_marlin Optimized Quantized GEMM for GPTQ.
ops.def(
"gptq_marlin_gemm(Tensor a, Tensor b_q_weight, Tensor b_scales, "
"Tensor b_zeros, Tensor g_idx, Tensor perm, Tensor workspace, "
"int b_q_type, "
"SymInt size_m, SymInt size_n, SymInt size_k, bool is_k_full, "
"bool has_zp, bool use_fp32_reduce, bool is_zp_float) -> Tensor");
// gptq_marlin repack from GPTQ.
ops.def(
"gptq_marlin_repack(Tensor b_q_weight, Tensor perm, "
"SymInt size_k, SymInt size_n, int num_bits) -> Tensor");
// Marlin (Dense) Optimized Quantized GEMM for GPTQ.
ops.def(
"marlin_gemm(Tensor a, Tensor b_q_weight, Tensor b_scales, "
"Tensor! workspace, SymInt size_m, SymInt size_n, SymInt size_k) -> "
"Tensor");
// Marlin_24 (Sparse) Optimized Quantized GEMM for GPTQ.
ops.def(
"gptq_marlin_24_gemm(Tensor a, Tensor b_q_weight, Tensor b_meta, "
"Tensor b_scales, Tensor workspace, "
"int b_q_type, "
"SymInt size_m, SymInt size_n, SymInt size_k) -> Tensor");
// marlin_qqq_gemm for QQQ.
ops.def(
"marlin_qqq_gemm(Tensor a, Tensor b_q_weight, "
"Tensor s_tok, Tensor s_ch, Tensor s_group, "
"Tensor! workspace, SymInt size_m, SymInt size_n, "
"SymInt size_k) -> Tensor");
}
TORCH_LIBRARY_IMPL_EXPAND(TORCH_EXTENSION_NAME, CUDA, ops) {
ops.impl("awq_marlin_repack", &awq_marlin_repack);
ops.impl("fp8_marlin_gemm", &fp8_marlin_gemm);
ops.impl("gptq_marlin_24_gemm", &gptq_marlin_24_gemm);
ops.impl("gptq_marlin_gemm", &gptq_marlin_gemm);
ops.impl("gptq_marlin_repack", &gptq_marlin_repack);
ops.impl("marlin_gemm", &marlin_gemm);
ops.impl("marlin_qqq_gemm", &marlin_qqq_gemm);
}
TORCH_LIBRARY_IMPL_EXPAND(TORCH_EXTENSION_NAME, Meta, ops) {
ops.impl("awq_marlin_repack", &awq_marlin_repack_meta);
ops.impl("gptq_marlin_repack", &gptq_marlin_repack_meta);
}
REGISTER_EXTENSION(TORCH_EXTENSION_NAME)