|
#include <torch/library.h> |
|
|
|
#include "core/registration.h" |
|
#include "torch_binding.h" |
|
|
|
TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) { |
|
|
|
|
|
ops.def( |
|
"cutlass_scaled_mm(Tensor! out, Tensor a," |
|
" Tensor b, Tensor a_scales," |
|
" Tensor b_scales, Tensor? bias) -> ()"); |
|
ops.impl("cutlass_scaled_mm", torch::kCUDA, &cutlass_scaled_mm); |
|
|
|
|
|
|
|
ops.def( |
|
"cutlass_scaled_mm_azp(Tensor! out, Tensor a," |
|
" Tensor b, Tensor a_scales," |
|
" Tensor b_scales, Tensor azp_adj," |
|
" Tensor? azp, Tensor? bias) -> ()"); |
|
ops.impl("cutlass_scaled_mm_azp", torch::kCUDA, &cutlass_scaled_mm_azp); |
|
|
|
|
|
|
|
ops.def("cutlass_scaled_mm_supports_fp8(int cuda_device_capability) -> bool"); |
|
ops.impl("cutlass_scaled_mm_supports_fp8", &cutlass_scaled_mm_supports_fp8); |
|
|
|
|
|
ops.def( |
|
"static_scaled_fp8_quant(Tensor! result, Tensor input, Tensor scale) -> " |
|
"()"); |
|
ops.impl("static_scaled_fp8_quant", torch::kCUDA, &static_scaled_fp8_quant); |
|
|
|
|
|
ops.def( |
|
"dynamic_scaled_fp8_quant(Tensor! result, Tensor input, Tensor! scale) " |
|
"-> " |
|
"()"); |
|
ops.impl("dynamic_scaled_fp8_quant", torch::kCUDA, &dynamic_scaled_fp8_quant); |
|
|
|
|
|
ops.def( |
|
"dynamic_per_token_scaled_fp8_quant(Tensor! result, Tensor input, " |
|
"Tensor! scale, Tensor? scale_ub) -> " |
|
"()"); |
|
ops.impl("dynamic_per_token_scaled_fp8_quant", torch::kCUDA, |
|
&dynamic_per_token_scaled_fp8_quant); |
|
|
|
|
|
ops.def( |
|
"static_scaled_int8_quant(Tensor! result, Tensor input, Tensor scale," |
|
"Tensor? azp) -> ()"); |
|
ops.impl("static_scaled_int8_quant", torch::kCUDA, &static_scaled_int8_quant); |
|
|
|
|
|
ops.def( |
|
"dynamic_scaled_int8_quant(Tensor! result, Tensor input, Tensor! scale, " |
|
"Tensor!? azp) -> ()"); |
|
ops.impl("dynamic_scaled_int8_quant", torch::kCUDA, |
|
&dynamic_scaled_int8_quant); |
|
|
|
|
|
ops.def( |
|
"fp8_marlin_gemm(Tensor a, Tensor b_q_weight, Tensor b_scales, " |
|
"Tensor! workspace, int num_bits, SymInt size_m, SymInt size_n, " |
|
"SymInt size_k) -> Tensor"); |
|
|
|
|
|
ops.def( |
|
"awq_marlin_repack(Tensor b_q_weight, SymInt size_k, " |
|
"SymInt size_n, int num_bits) -> Tensor"); |
|
|
|
|
|
ops.def( |
|
"gptq_marlin_gemm(Tensor a, Tensor b_q_weight, Tensor b_scales, " |
|
"Tensor b_zeros, Tensor g_idx, Tensor perm, Tensor workspace, " |
|
"int b_q_type, " |
|
"SymInt size_m, SymInt size_n, SymInt size_k, bool is_k_full, " |
|
"bool has_zp, bool use_fp32_reduce, bool is_zp_float) -> Tensor"); |
|
|
|
|
|
ops.def( |
|
"gptq_marlin_repack(Tensor b_q_weight, Tensor perm, " |
|
"SymInt size_k, SymInt size_n, int num_bits) -> Tensor"); |
|
|
|
|
|
ops.def( |
|
"marlin_gemm(Tensor a, Tensor b_q_weight, Tensor b_scales, " |
|
"Tensor! workspace, SymInt size_m, SymInt size_n, SymInt size_k) -> " |
|
"Tensor"); |
|
|
|
|
|
ops.def( |
|
"gptq_marlin_24_gemm(Tensor a, Tensor b_q_weight, Tensor b_meta, " |
|
"Tensor b_scales, Tensor workspace, " |
|
"int b_q_type, " |
|
"SymInt size_m, SymInt size_n, SymInt size_k) -> Tensor"); |
|
|
|
|
|
ops.def( |
|
"marlin_qqq_gemm(Tensor a, Tensor b_q_weight, " |
|
"Tensor s_tok, Tensor s_ch, Tensor s_group, " |
|
"Tensor! workspace, SymInt size_m, SymInt size_n, " |
|
"SymInt size_k) -> Tensor"); |
|
} |
|
|
|
TORCH_LIBRARY_IMPL_EXPAND(TORCH_EXTENSION_NAME, CUDA, ops) { |
|
ops.impl("awq_marlin_repack", &awq_marlin_repack); |
|
ops.impl("fp8_marlin_gemm", &fp8_marlin_gemm); |
|
ops.impl("gptq_marlin_24_gemm", &gptq_marlin_24_gemm); |
|
ops.impl("gptq_marlin_gemm", &gptq_marlin_gemm); |
|
ops.impl("gptq_marlin_repack", &gptq_marlin_repack); |
|
ops.impl("marlin_gemm", &marlin_gemm); |
|
ops.impl("marlin_qqq_gemm", &marlin_qqq_gemm); |
|
} |
|
|
|
TORCH_LIBRARY_IMPL_EXPAND(TORCH_EXTENSION_NAME, Meta, ops) { |
|
ops.impl("awq_marlin_repack", &awq_marlin_repack_meta); |
|
ops.impl("gptq_marlin_repack", &gptq_marlin_repack_meta); |
|
} |
|
|
|
REGISTER_EXTENSION(TORCH_EXTENSION_NAME) |
|
|