danieldk's picture
danieldk HF staff
Add full Marlin support and tests for Marlin/CUTLASS
165b25c
raw
history blame
1.98 kB
"""Kernel test utils"""
import itertools
import random
import unittest
from numbers import Number
from typing import Any, Dict, List, NamedTuple, Optional, Sequence, Tuple, Union
import pytest
import torch
from torch._prims_common import TensorLikeType
# For now, disable "test_aot_dispatch_dynamic" since there are some
# bugs related to this test in PyTorch 2.4.
DEFAULT_OPCHECK_TEST_UTILS: Tuple[str, ...] = (
"test_schema",
"test_autograd_registration",
"test_faketensor",
)
ALL_OPCHECK_TEST_UTILS: Tuple[str, ...] = (
"test_schema",
"test_autograd_registration",
"test_faketensor",
"test_aot_dispatch_dynamic",
)
# Copied/modified from torch._refs.__init__.py
def fp8_allclose(
a: TensorLikeType,
b: TensorLikeType,
rtol: float = 1e-05,
atol: float = 1e-08,
equal_nan: bool = False,
) -> bool:
"""
Reference implementation of torch.allclose
"""
torch._refs._check_close_args(name="torch.allclose", a=a, b=b, rtol=rtol, atol=atol)
return bool(
torch.all(
torch.isclose(
a.double(), b.double(), rtol=rtol, atol=atol, equal_nan=equal_nan
)
).item()
)
# A special version of op check that has a restricted default set of test_utils
# and a patched version of allclose that supports fp8 types.
def opcheck(
op: Union[
torch._ops.OpOverload,
torch._ops.OpOverloadPacket,
torch._library.custom_ops.CustomOpDef,
],
args: Tuple[Any, ...],
kwargs: Optional[Dict[str, Any]] = None,
*,
test_utils: Union[str, Sequence[str]] = ALL_OPCHECK_TEST_UTILS,
raise_exception: bool = True,
cond: bool = True
) -> Dict[str, str]:
with unittest.mock.patch("torch.allclose", new=fp8_allclose):
return (
torch.library.opcheck(
op, args, kwargs, test_utils=test_utils, raise_exception=raise_exception
)
if cond
else {}
)