|
from typing import List |
|
|
|
import numpy |
|
import torch |
|
|
|
from .marlin_utils_test import marlin_permute_weights |
|
from .quant_utils import get_pack_factor, qqq_quantize_weights |
|
|
|
|
|
def marlin_qqq_weights(q_w, size_k, size_n, num_bits, perm, group_size): |
|
|
|
q_w = marlin_permute_weights(q_w, size_k, size_n, perm) |
|
|
|
|
|
pack_factor = get_pack_factor(num_bits) |
|
orig_device = q_w.device |
|
|
|
q_w = q_w.cpu().numpy().astype(numpy.uint32) |
|
|
|
q_packed = numpy.zeros((q_w.shape[0], q_w.shape[1] // pack_factor), |
|
dtype=numpy.uint32) |
|
if group_size == size_k: |
|
for i in range(pack_factor): |
|
q_packed |= (q_w[:, i::pack_factor] & 0xF) << num_bits * i |
|
else: |
|
for i in range(pack_factor): |
|
q_packed |= q_w[:, i::pack_factor] << num_bits * i |
|
|
|
q_packed = torch.from_numpy(q_packed.astype(numpy.int32)).to(orig_device) |
|
|
|
return q_packed |
|
|
|
|
|
def get_qqq_scale_perms(): |
|
scale_perm: List[int] = [] |
|
for i in range(8): |
|
scale_perm.extend([i + 8 * j for j in range(8)]) |
|
scale_perm_single: List[int] = [] |
|
for i in range(4): |
|
scale_perm_single.extend( |
|
[2 * i + j for j in [0, 1, 8, 9, 16, 17, 24, 25]]) |
|
return scale_perm, scale_perm_single |
|
|
|
|
|
|
|
def get_qqq_weight_perm(num_bits: int, quant_type: str): |
|
perm_list: List[int] = [] |
|
for i in range(32): |
|
perm1: List[int] = [] |
|
col = i // 4 |
|
for block in [0, 1]: |
|
for row in [ |
|
4 * (i % 4), |
|
4 * (i % 4) + 1, |
|
4 * (i % 4) + 2, |
|
4 * (i % 4) + 3, |
|
]: |
|
perm1.append(16 * row + col + 8 * block) |
|
for j in range(4): |
|
perm_list.extend([p + 256 * j for p in perm1]) |
|
|
|
perm = numpy.array(perm_list) |
|
|
|
assert quant_type in ["per-channel", |
|
"per-group"], "not supported quantization type" |
|
if num_bits == 4: |
|
if quant_type == "per-channel": |
|
interleave = numpy.array([4, 0, 5, 1, 6, 2, 7, 3]) |
|
else: |
|
interleave = numpy.array([0, 2, 4, 6, 1, 3, 5, 7]) |
|
else: |
|
raise Exception("num_bits must be 4, got {}".format(num_bits)) |
|
|
|
perm = perm.reshape((-1, len(interleave)))[:, interleave].ravel() |
|
perm = torch.from_numpy(perm) |
|
return perm |
|
|
|
|
|
def marlin_qqq_permute_scales(s_group, s_channel, size_k, size_n, group_size): |
|
scale_perm, scale_perm_single = get_qqq_scale_perms() |
|
if group_size < size_k and group_size != -1: |
|
s_group = s_group.reshape((-1, len(scale_perm)))[:, scale_perm] |
|
s_channel = s_channel.reshape( |
|
(-1, len(scale_perm_single)))[:, scale_perm_single] |
|
s_group = s_group.reshape((-1, size_n)).contiguous() |
|
else: |
|
s_channel = s_channel.reshape( |
|
(-1, len(scale_perm_single)))[:, scale_perm_single] |
|
s_channel = s_channel.reshape((-1, size_n)).contiguous() |
|
|
|
return s_group, s_channel |
|
|
|
|
|
def marlin_qqq_quantize( |
|
w: torch.Tensor, |
|
num_bits: int, |
|
group_size: int, |
|
): |
|
size_k, size_n = w.shape |
|
|
|
|
|
if group_size == -1: |
|
group_size = size_k |
|
assert group_size <= size_k |
|
quant_type = "per-channel" if group_size == size_k else "per-group" |
|
|
|
|
|
w_ref, q_w, s_group, s_channel = qqq_quantize_weights( |
|
w, num_bits, group_size) |
|
|
|
|
|
weight_perm = get_qqq_weight_perm(num_bits, quant_type) |
|
marlin_qqq_q_w = marlin_qqq_weights(q_w, size_k, size_n, num_bits, |
|
weight_perm, group_size) |
|
marlin_qqq_s_group, marlin_qqq_s_channel = marlin_qqq_permute_scales( |
|
s_group, s_channel, size_k, size_n, group_size) |
|
|
|
|
|
res_list = [ |
|
w_ref, marlin_qqq_q_w, marlin_qqq_s_group, marlin_qqq_s_channel |
|
] |
|
for i in range(len(res_list)): |
|
res_list[i] = res_list[i].to(w.device) |
|
|
|
return res_list |
|
|