quantization / ext-torch /utils /marlin_utils_test_qqq.py
danieldk's picture
danieldk HF staff
Add full Marlin support and tests for Marlin/CUTLASS
165b25c
raw
history blame
4.06 kB
from typing import List
import numpy
import torch
from .marlin_utils_test import marlin_permute_weights
from .quant_utils import get_pack_factor, qqq_quantize_weights
def marlin_qqq_weights(q_w, size_k, size_n, num_bits, perm, group_size):
# Permute
q_w = marlin_permute_weights(q_w, size_k, size_n, perm)
# Pack
pack_factor = get_pack_factor(num_bits)
orig_device = q_w.device
q_w = q_w.cpu().numpy().astype(numpy.uint32)
q_packed = numpy.zeros((q_w.shape[0], q_w.shape[1] // pack_factor),
dtype=numpy.uint32)
if group_size == size_k:
for i in range(pack_factor):
q_packed |= (q_w[:, i::pack_factor] & 0xF) << num_bits * i
else:
for i in range(pack_factor):
q_packed |= q_w[:, i::pack_factor] << num_bits * i
q_packed = torch.from_numpy(q_packed.astype(numpy.int32)).to(orig_device)
return q_packed
def get_qqq_scale_perms():
scale_perm: List[int] = []
for i in range(8):
scale_perm.extend([i + 8 * j for j in range(8)])
scale_perm_single: List[int] = []
for i in range(4):
scale_perm_single.extend(
[2 * i + j for j in [0, 1, 8, 9, 16, 17, 24, 25]])
return scale_perm, scale_perm_single
# NOTE(HandH1998): QQQ employs different perms for per-group and per-channel weight quantization. # noqa: E501
def get_qqq_weight_perm(num_bits: int, quant_type: str):
perm_list: List[int] = []
for i in range(32):
perm1: List[int] = []
col = i // 4
for block in [0, 1]:
for row in [
4 * (i % 4),
4 * (i % 4) + 1,
4 * (i % 4) + 2,
4 * (i % 4) + 3,
]:
perm1.append(16 * row + col + 8 * block)
for j in range(4):
perm_list.extend([p + 256 * j for p in perm1])
perm = numpy.array(perm_list)
assert quant_type in ["per-channel",
"per-group"], "not supported quantization type"
if num_bits == 4:
if quant_type == "per-channel":
interleave = numpy.array([4, 0, 5, 1, 6, 2, 7, 3])
else:
interleave = numpy.array([0, 2, 4, 6, 1, 3, 5, 7])
else:
raise Exception("num_bits must be 4, got {}".format(num_bits))
perm = perm.reshape((-1, len(interleave)))[:, interleave].ravel()
perm = torch.from_numpy(perm)
return perm
def marlin_qqq_permute_scales(s_group, s_channel, size_k, size_n, group_size):
scale_perm, scale_perm_single = get_qqq_scale_perms()
if group_size < size_k and group_size != -1:
s_group = s_group.reshape((-1, len(scale_perm)))[:, scale_perm]
s_channel = s_channel.reshape(
(-1, len(scale_perm_single)))[:, scale_perm_single]
s_group = s_group.reshape((-1, size_n)).contiguous()
else:
s_channel = s_channel.reshape(
(-1, len(scale_perm_single)))[:, scale_perm_single]
s_channel = s_channel.reshape((-1, size_n)).contiguous()
return s_group, s_channel
def marlin_qqq_quantize(
w: torch.Tensor,
num_bits: int,
group_size: int,
):
size_k, size_n = w.shape
# Normalize group_size
if group_size == -1:
group_size = size_k
assert group_size <= size_k
quant_type = "per-channel" if group_size == size_k else "per-group"
# Quantize
w_ref, q_w, s_group, s_channel = qqq_quantize_weights(
w, num_bits, group_size)
# Reformat to marlin_qqq
weight_perm = get_qqq_weight_perm(num_bits, quant_type)
marlin_qqq_q_w = marlin_qqq_weights(q_w, size_k, size_n, num_bits,
weight_perm, group_size)
marlin_qqq_s_group, marlin_qqq_s_channel = marlin_qqq_permute_scales(
s_group, s_channel, size_k, size_n, group_size)
# Create result
res_list = [
w_ref, marlin_qqq_q_w, marlin_qqq_s_group, marlin_qqq_s_channel
]
for i in range(len(res_list)):
res_list[i] = res_list[i].to(w.device)
return res_list