quantization / gptq_marlin /marlin_dtypes.cuh
danieldk's picture
danieldk HF staff
Add `scaled_(int|fp8)_quant` and `fp8_marlin_gemm`
5c6fb68
raw
history blame
1.99 kB
#ifndef _data_types_cuh
#define _data_types_cuh
#include "marlin.cuh"
#include <cuda_fp16.h>
#include <cuda_bf16.h>
namespace marlin {
template <typename scalar_t>
class ScalarType {};
template <>
class ScalarType<half> {
public:
using scalar_t = half;
using scalar_t2 = half2;
// Matrix fragments for tensor core instructions; their precise layout is
// documented here:
// https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#matrix-fragments-for-mma-m16n8k16-with-floating-point-type
using FragA = Vec<half2, 4>;
using FragB = Vec<half2, 2>;
using FragC = Vec<float, 4>;
using FragS = Vec<half2, 1>;
using FragZP = Vec<half2, 4>;
static __device__ float inline num2float(const half x) {
return __half2float(x);
}
static __device__ half2 inline num2num2(const half x) {
return __half2half2(x);
}
static __device__ half2 inline nums2num2(const half x1, const half x2) {
return __halves2half2(x1, x2);
}
static __host__ __device__ half inline float2num(const float x) {
return __float2half(x);
}
};
template <>
class ScalarType<nv_bfloat16> {
public:
using scalar_t = nv_bfloat16;
using scalar_t2 = nv_bfloat162;
using FragA = Vec<nv_bfloat162, 4>;
using FragB = Vec<nv_bfloat162, 2>;
using FragC = Vec<float, 4>;
using FragS = Vec<nv_bfloat162, 1>;
using FragZP = Vec<nv_bfloat162, 4>;
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
static __device__ float inline num2float(const nv_bfloat16 x) {
return __bfloat162float(x);
}
static __device__ nv_bfloat162 inline num2num2(const nv_bfloat16 x) {
return __bfloat162bfloat162(x);
}
static __device__ nv_bfloat162 inline nums2num2(const nv_bfloat16 x1,
const nv_bfloat16 x2) {
return __halves2bfloat162(x1, x2);
}
static __host__ __device__ nv_bfloat16 inline float2num(const float x) {
return __float2bfloat16(x);
}
#endif
};
} // namespace marlin
#endif