|
from typing import TYPE_CHECKING |
|
|
|
import torch |
|
|
|
|
|
if TYPE_CHECKING: |
|
def register_fake(fn): |
|
return lambda name: fn |
|
else: |
|
try: |
|
from torch.library import register_fake |
|
except ImportError: |
|
from torch.library import impl_abstract as register_fake |
|
|
|
try: |
|
from ._ops import ops, add_op_namespace_prefix |
|
except ImportError as e: |
|
|
|
try: |
|
import _quantization |
|
|
|
ops = torch.ops._quantization |
|
|
|
def add_op_namespace_prefix(op_name: str): |
|
return f"_quantization::{op_name}" |
|
except ImportError: |
|
raise e |
|
|
|
|
|
from .scalar_type import ScalarType |
|
|
|
|
|
|
|
def fp8_marlin_gemm( |
|
a: torch.Tensor, |
|
b_q_weight: torch.Tensor, |
|
b_scales: torch.Tensor, |
|
workspace: torch.Tensor, |
|
num_bits: int, |
|
size_m: int, |
|
size_n: int, |
|
size_k: int, |
|
) -> torch.Tensor: |
|
return ops.fp8_marlin_gemm( |
|
a, b_q_weight, b_scales, workspace, num_bits, size_m, size_n, size_k |
|
) |
|
|
|
|
|
|
|
def gptq_marlin_gemm( |
|
a: torch.Tensor, |
|
b_q_weight: torch.Tensor, |
|
b_scales: torch.Tensor, |
|
b_zeros: torch.Tensor, |
|
g_idx: torch.Tensor, |
|
perm: torch.Tensor, |
|
workspace: torch.Tensor, |
|
b_q_type: ScalarType, |
|
size_m: int, |
|
size_n: int, |
|
size_k: int, |
|
is_k_full: bool, |
|
has_zp: bool = False, |
|
use_fp32_reduce: bool = False, |
|
is_zp_float: bool = False, |
|
) -> torch.Tensor: |
|
return ops.gptq_marlin_gemm( |
|
a, |
|
b_q_weight, |
|
b_scales, |
|
b_zeros, |
|
g_idx, |
|
perm, |
|
workspace, |
|
b_q_type.id, |
|
size_m, |
|
size_n, |
|
size_k, |
|
is_k_full, |
|
has_zp, |
|
use_fp32_reduce, |
|
is_zp_float, |
|
) |
|
|
|
|
|
|
|
def gptq_marlin_repack( |
|
b_q_weight: torch.Tensor, |
|
perm: torch.Tensor, |
|
size_k: int, |
|
size_n: int, |
|
num_bits: int, |
|
) -> torch.Tensor: |
|
return ops.gptq_marlin_repack(b_q_weight, perm, size_k, size_n, num_bits) |
|
|
|
|
|
|
|
def awq_marlin_repack( |
|
b_q_weight: torch.Tensor, size_k: int, size_n: int, num_bits: int |
|
) -> torch.Tensor: |
|
return ops.awq_marlin_repack(b_q_weight, size_k, size_n, num_bits) |
|
|
|
|
|
|
|
def marlin_gemm( |
|
a: torch.Tensor, |
|
b_q_weight: torch.Tensor, |
|
b_scales: torch.Tensor, |
|
workspace: torch.Tensor, |
|
size_m: int, |
|
size_n: int, |
|
size_k: int, |
|
) -> torch.Tensor: |
|
return ops.marlin_gemm( |
|
a, b_q_weight, b_scales, workspace, size_m, size_n, size_k |
|
) |
|
|
|
|
|
|
|
def gptq_marlin_24_gemm( |
|
a: torch.Tensor, |
|
b_q_weight: torch.Tensor, |
|
b_meta: torch.Tensor, |
|
b_scales: torch.Tensor, |
|
workspace: torch.Tensor, |
|
b_q_type: ScalarType, |
|
size_m: int, |
|
size_n: int, |
|
size_k: int, |
|
) -> torch.Tensor: |
|
return ops.gptq_marlin_24_gemm( |
|
a, b_q_weight, b_meta, b_scales, workspace, b_q_type.id, size_m, size_n, size_k |
|
) |
|
|
|
|
|
|
|
def marlin_qqq_gemm( |
|
a: torch.Tensor, |
|
b_q_weight: torch.Tensor, |
|
s_tok: torch.Tensor, |
|
s_ch: torch.Tensor, |
|
s_group: torch.Tensor, |
|
workspace: torch.Tensor, |
|
size_m: int, |
|
size_n: int, |
|
size_k: int, |
|
) -> torch.Tensor: |
|
return ops.marlin_qqq_gemm( |
|
a, b_q_weight, s_tok, s_ch, s_group, workspace, size_m, size_n, size_k |
|
) |
|
|
|
|
|
|
|
|
|
if hasattr(ops, "gptq_marlin_24_gemm"): |
|
@register_fake(add_op_namespace_prefix("fp8_marlin_gemm")) |
|
def _fp8_marlin_gemm_fake(a: torch.Tensor, b_q_weight: torch.Tensor, |
|
b_scales: torch.Tensor, workspace: torch.Tensor, |
|
num_bits: int, size_m: torch.SymInt, |
|
size_n: torch.SymInt, |
|
size_k: torch.SymInt) -> torch.Tensor: |
|
return torch.empty((size_m, size_n), dtype=a.dtype, device=a.device) |
|
|
|
@register_fake(add_op_namespace_prefix("gptq_marlin_24_gemm")) |
|
def _gptq_marlin_24_gemm_fake(a: torch.Tensor, b_q_weight: torch.Tensor, |
|
b_meta: torch.Tensor, b_scales: torch.Tensor, |
|
workspace: torch.Tensor, |
|
b_q_type: ScalarType, size_m: torch.SymInt, |
|
size_n: torch.SymInt, |
|
size_k: torch.SymInt) -> torch.Tensor: |
|
return torch.empty((size_m, size_n), device=a.device, dtype=a.dtype) |
|
|
|
@register_fake(add_op_namespace_prefix("gptq_marlin_gemm")) |
|
def _gptq_marlin_gemm_fake(a: torch.Tensor, |
|
b_q_weight: torch.Tensor, |
|
b_scales: torch.Tensor, |
|
b_zeros: torch.Tensor, |
|
g_idx: torch.Tensor, |
|
perm: torch.Tensor, |
|
workspace: torch.Tensor, |
|
b_q_type: ScalarType, |
|
size_m: torch.SymInt, |
|
size_n: torch.SymInt, |
|
size_k: torch.SymInt, |
|
is_k_full: bool, |
|
has_zp: bool = False, |
|
use_fp32_reduce: bool = False, |
|
is_zp_float: bool = False) -> torch.Tensor: |
|
return torch.empty((size_m, size_n), device=a.device, dtype=a.dtype) |
|
|
|
@register_fake(add_op_namespace_prefix("marlin_qqq_gemm")) |
|
def _marlin_qqq_gemm_fake(a: torch.Tensor, b_q_weight: torch.Tensor, |
|
s_tok: torch.Tensor, s_ch: torch.Tensor, |
|
s_group: torch.Tensor, workspace: torch.Tensor, |
|
size_m: torch.SymInt, size_n: torch.SymInt, |
|
size_k: torch.SymInt) -> torch.Tensor: |
|
return torch.empty((size_m, size_n), |
|
dtype=torch.float16, |
|
device=a.device) |
|
|
|
@register_fake(add_op_namespace_prefix("marlin_gemm")) |
|
def _marlin_gemm_fake(a: torch.Tensor, b_q_weight: torch.Tensor, |
|
b_scales: torch.Tensor, workspace: torch.Tensor, |
|
size_m: torch.SymInt, size_n: torch.SymInt, |
|
size_k: torch.SymInt) -> torch.Tensor: |
|
return torch.empty((size_m, size_n), |
|
dtype=torch.float16, |
|
device=a.device) |
|
|