quantization / ext-torch /scalar_type.py
danieldk's picture
danieldk HF staff
Add full Marlin support and tests for Marlin/CUTLASS
165b25c
raw
history blame
11.8 kB
import functools
import struct
from dataclasses import dataclass
from enum import Enum
from typing import Optional, Union
# Mirrors enum in `core/scalar_type.hpp`
class NanRepr(Enum):
NONE = 0 # nans are not supported
IEEE_754 = 1 # nans are: Exp all 1s, mantissa not all 0s
EXTD_RANGE_MAX_MIN = 2 # nans are: Exp all 1s, mantissa all 1s
# This ScalarType class is a parallel implementation of the C++ ScalarType
# class found in csrc/core/scalar_type.hpp. These two classes should be kept
# in sync until the inductor fully supports custom C++ classes.
@dataclass(frozen=True)
class ScalarType:
"""
ScalarType can represent a wide range of floating point and integer
types, in particular it can be used to represent sub-byte data types
(something that torch.dtype currently does not support). It is also
capable of representing types with a bias, i.e.:
`stored_value = value + bias`,
this is useful for quantized types (e.g. standard GPTQ 4bit uses a bias
of 8). The implementation for this class can be found in
csrc/core/scalar_type.hpp, these type signatures should be kept in sync
with that file.
"""
exponent: int
"""
Number of bits in the exponent if this is a floating point type
(zero if this an integer type)
"""
mantissa: int
"""
Number of bits in the mantissa if this is a floating point type,
or the number bits representing an integer excluding the sign bit if
this an integer type.
"""
signed: bool
"If the type is signed (i.e. has a sign bit)"
bias: int
"""
bias used to encode the values in this scalar type
(value = stored_value - bias, default 0) for example if we store the
type as an unsigned integer with a bias of 128 then the value 0 will be
stored as 128 and -1 will be stored as 127 and 1 will be stored as 129.
"""
_finite_values_only: bool = False
"""
Private: if infs are supported, used `has_infs()` instead.
"""
nan_repr: NanRepr = NanRepr.IEEE_754
"""
How NaNs are represent in this scalar type, returns NanRepr value.
(not applicable for integer types)
"""
def _floating_point_max_int(self) -> int:
assert (
self.mantissa <= 52 and self.exponent <= 11
), f"Cannot represent max/min as a double for type {self.__str__()}"
max_mantissa = (1 << self.mantissa) - 1
if self.nan_repr == NanRepr.EXTD_RANGE_MAX_MIN:
max_mantissa = max_mantissa - 1
max_exponent = (1 << self.exponent) - 2
if (self.nan_repr == NanRepr.EXTD_RANGE_MAX_MIN
or self.nan_repr == NanRepr.NONE):
assert (
self.exponent < 11
), f"Cannot represent max/min as a double for type {self.__str__()}"
max_exponent = max_exponent + 1
# adjust the exponent to match that of a double
# for now we assume the exponent bias is the standard 2^(e-1) -1, (where
# e is the exponent bits), there is some precedent for non-standard
# biases, example `float8_e4m3b11fnuz` here:
# https://github.com/jax-ml/ml_dtypes but to avoid premature over
# complication we are just assuming the standard exponent bias until
# there is a need to support non-standard biases
exponent_bias = (1 << (self.exponent - 1)) - 1
exponent_bias_double = (1 << 10) - 1 # double e = 11
max_exponent_double = (max_exponent - exponent_bias +
exponent_bias_double)
# shift the mantissa and exponent into the proper positions for an
# IEEE double and bitwise-or them together.
return (max_mantissa <<
(52 - self.mantissa)) | (max_exponent_double << 52)
def _floating_point_max(self) -> float:
double_raw = self._floating_point_max_int()
return struct.unpack('!d', struct.pack('!Q', double_raw))[0]
def _raw_max(self) -> Union[int, float]:
if self.is_floating_point():
return self._floating_point_max()
else:
assert (self.size_bits < 64 or self.size_bits == 64
and self.is_signed()), "Cannot represent max as an int"
return (1 << self.mantissa) - 1
def _raw_min(self) -> Union[int, float]:
if self.is_floating_point():
assert self.is_signed(
), "We currently assume all floating point types are signed"
sign_bit_double = 1 << 63
max_raw = self._floating_point_max_int()
min_raw = max_raw | sign_bit_double
return struct.unpack('!d', struct.pack('!Q', min_raw))[0]
else:
assert (not self.is_signed() or
self.size_bits <= 64), "Cannot represent min as a int64_t"
if self.is_signed():
return -(1 << (self.size_bits - 1))
else:
return 0
@functools.cached_property
def id(self) -> int:
"""
Convert the ScalarType to an int which can be passed to pytorch custom
ops. This layout of the int must be kept in sync with the C++
ScalarType's from_id method.
"""
val = 0
offset = 0
def or_and_advance(member, bit_width):
nonlocal val
nonlocal offset
bit_mask = (1 << bit_width) - 1
val = val | (int(member) & bit_mask) << offset
offset = offset + bit_width
or_and_advance(self.exponent, 8)
or_and_advance(self.mantissa, 8)
or_and_advance(self.signed, 1)
or_and_advance(self.bias, 32)
or_and_advance(self._finite_values_only, 1)
or_and_advance(self.nan_repr.value, 8)
assert offset <= 64, \
f"ScalarType fields too big {offset} to fit into an int64"
return val
@property
def size_bits(self) -> int:
return self.exponent + self.mantissa + int(self.signed)
def min(self) -> Union[int, float]:
"""
Min representable value for this scalar type.
(accounting for bias if there is one)
"""
return self._raw_min() - self.bias
def max(self) -> Union[int, float]:
"""
Max representable value for this scalar type.
(accounting for bias if there is one)
"""
return self._raw_max() - self.bias
def is_signed(self) -> bool:
"""
If the type is signed (i.e. has a sign bit), same as `signed`
added for consistency with:
https://pytorch.org/docs/stable/generated/torch.Tensor.is_signed.html
"""
return self.signed
def is_floating_point(self) -> bool:
"If the type is a floating point type"
return self.exponent != 0
def is_integer(self) -> bool:
"If the type is an integer type"
return self.exponent == 0
def has_bias(self) -> bool:
"If the type has a non-zero bias"
return self.bias != 0
def has_infs(self) -> bool:
"If the type is floating point and supports infinity"
return not self._finite_values_only
def has_nans(self) -> bool:
return self.nan_repr != NanRepr.NONE.value
def is_ieee_754(self) -> bool:
"""
If the type is a floating point type that follows IEEE 754
conventions
"""
return self.nan_repr == NanRepr.IEEE_754.value and \
not self._finite_values_only
def __str__(self) -> str:
"""
naming generally follows: https://github.com/jax-ml/ml_dtypes
for floating point types (leading f) the scheme is:
`float<size_bits>_e<exponent_bits>m<mantissa_bits>[flags]`
flags:
- no-flags: means it follows IEEE 754 conventions
- f: means finite values only (no infinities)
- n: means nans are supported (non-standard encoding)
for integer types the scheme is:
`[u]int<size_bits>[b<bias>]`
- if bias is not present it means its zero
"""
if self.is_floating_point():
ret = "float" + str(self.size_bits) + "_e" + str(
self.exponent) + "m" + str(self.mantissa)
if not self.is_ieee_754():
if self._finite_values_only:
ret = ret + "f"
if self.nan_repr != NanRepr.NONE:
ret = ret + "n"
return ret
else:
ret = ("int" if self.is_signed() else "uint") + str(self.size_bits)
if self.has_bias():
ret = ret + "b" + str(self.bias)
return ret
def __repr__(self) -> str:
return "ScalarType." + self.__str__()
# __len__ needs to be defined (and has to throw TypeError) for pytorch's
# opcheck to work.
def __len__(self) -> int:
raise TypeError
#
# Convenience Constructors
#
@classmethod
def int_(cls, size_bits: int, bias: Optional[int]) -> 'ScalarType':
"Create a signed integer scalar type (size_bits includes sign-bit)."
ret = cls(0, size_bits - 1, True, bias if bias else 0)
ret.id # noqa B018: make sure the id is cached
return ret
@classmethod
def uint(cls, size_bits: int, bias: Optional[int]) -> 'ScalarType':
"""Create a unsigned integer scalar type."""
ret = cls(0, size_bits, False, bias if bias else 0)
ret.id # noqa B018: make sure the id is cached
return ret
@classmethod
def float_IEEE754(cls, exponent: int, mantissa: int) -> 'ScalarType':
"""
Create a standard floating point type
(i.e. follows IEEE 754 conventions).
"""
assert (mantissa > 0 and exponent > 0)
ret = cls(exponent, mantissa, True, 0)
ret.id # noqa B018: make sure the id is cached
return ret
@classmethod
def float_(cls, exponent: int, mantissa: int, finite_values_only: bool,
nan_repr: NanRepr) -> 'ScalarType':
"""
Create a non-standard floating point type
(i.e. does not follow IEEE 754 conventions).
"""
assert (mantissa > 0 and exponent > 0)
assert (nan_repr != NanRepr.IEEE_754), (
"use `float_IEEE754` constructor for floating point types that "
"follow IEEE 754 conventions")
ret = cls(exponent, mantissa, True, 0, finite_values_only, nan_repr)
ret.id # noqa B018: make sure the id is cached
return ret
# naming generally follows: https://github.com/jax-ml/ml_dtypes
# for floating point types (leading f) the scheme is:
# `float<size_bits>_e<exponent_bits>m<mantissa_bits>[flags]`
# flags:
# - no-flags: means it follows IEEE 754 conventions
# - f: means finite values only (no infinities)
# - n: means nans are supported (non-standard encoding)
# for integer types the scheme is:
# `[u]int<size_bits>[b<bias>]`
# - if bias is not present it means its zero
class scalar_types:
int4 = ScalarType.int_(4, None)
uint4 = ScalarType.uint(4, None)
int8 = ScalarType.int_(8, None)
uint8 = ScalarType.uint(8, None)
float8_e4m3fn = ScalarType.float_(4, 3, True, NanRepr.EXTD_RANGE_MAX_MIN)
float8_e5m2 = ScalarType.float_IEEE754(5, 2)
float16_e8m7 = ScalarType.float_IEEE754(8, 7)
float16_e5m10 = ScalarType.float_IEEE754(5, 10)
# fp6, https://github.com/usyd-fsalab/fp6_llm/tree/main
float6_e3m2f = ScalarType.float_(3, 2, True, NanRepr.NONE)
# "gptq" types
uint2b2 = ScalarType.uint(2, 2)
uint3b4 = ScalarType.uint(3, 4)
uint4b8 = ScalarType.uint(4, 8)
uint8b128 = ScalarType.uint(8, 128)
# colloquial names
bfloat16 = float16_e8m7
float16 = float16_e5m10