quantization / ext-torch /utils /marlin_utils_test.py
danieldk's picture
danieldk HF staff
Add full Marlin support and tests for Marlin/CUTLASS
165b25c
raw
history blame
4.88 kB
"""Utility functions used for tests and benchmarks"""
from typing import List, Optional
import numpy as np
import torch
from quantization.scalar_type import ScalarType
from .marlin_utils import GPTQ_MARLIN_TILE, marlin_permute_scales, marlin_zero_points
from .quant_utils import (
get_pack_factor,
gptq_quantize_weights,
quantize_weights,
sort_weights,
)
class MarlinWorkspace:
def __init__(self, out_features, min_thread_n, max_parallel):
assert (
out_features % min_thread_n == 0
), "out_features = {} is undivisible by min_thread_n = {}".format(
out_features, min_thread_n
)
max_workspace_size = (out_features // min_thread_n) * max_parallel
self.scratch = torch.zeros(max_workspace_size, dtype=torch.int, device="cuda")
def marlin_permute_weights(q_w, size_k, size_n, perm, tile=GPTQ_MARLIN_TILE):
assert q_w.shape == (size_k, size_n)
assert size_k % tile == 0, f"size_k = {size_k}, tile = {tile}"
assert size_n % tile == 0, f"size_k = {size_n}, tile = {tile}"
# Permute weights to 16x64 marlin tiles
q_w = q_w.reshape((size_k // tile, tile, size_n // tile, tile))
q_w = q_w.permute((0, 2, 1, 3))
q_w = q_w.reshape((size_k // tile, size_n * tile))
q_w = q_w.reshape((-1, perm.numel()))[:, perm].reshape(q_w.shape)
return q_w
def marlin_weights(q_w, size_k, size_n, num_bits, perm):
# Permute
q_w = marlin_permute_weights(q_w, size_k, size_n, perm)
# Pack
pack_factor = get_pack_factor(num_bits)
orig_device = q_w.device
q_w = q_w.cpu().numpy().astype(np.uint32)
q_packed = np.zeros((q_w.shape[0], q_w.shape[1] // pack_factor), dtype=np.uint32)
for i in range(pack_factor):
q_packed |= q_w[:, i::pack_factor] << num_bits * i
q_packed = torch.from_numpy(q_packed.astype(np.int32)).to(orig_device)
return q_packed
def get_weight_perm(num_bits: int):
perm_list: List[int] = []
for i in range(32):
perm1: List[int] = []
col = i // 4
for block in [0, 1]:
for row in [
2 * (i % 4),
2 * (i % 4) + 1,
2 * (i % 4 + 4),
2 * (i % 4 + 4) + 1,
]:
perm1.append(16 * row + col + 8 * block)
for j in range(4):
perm_list.extend([p + 256 * j for p in perm1])
perm = np.array(perm_list)
if num_bits == 4:
interleave = np.array([0, 2, 4, 6, 1, 3, 5, 7])
elif num_bits == 8:
interleave = np.array([0, 2, 1, 3])
else:
raise Exception("num_bits must be 4 or 8, got {}".format(num_bits))
perm = perm.reshape((-1, len(interleave)))[:, interleave].ravel()
perm = torch.from_numpy(perm)
return perm
def marlin_quantize(
w: torch.Tensor,
quant_type: ScalarType,
group_size: int,
act_order: bool,
test_perm: Optional[torch.Tensor] = None,
):
size_k, size_n = w.shape
num_bits = quant_type.size_bits
# Normalize group_size
if group_size == -1:
group_size = size_k
assert group_size <= size_k
# Quantize (and apply act_order if provided)
w_ref, q_w, s, g_idx, rand_perm = gptq_quantize_weights(
w, quant_type, group_size, act_order, test_perm
)
# For act_order, sort the "weights" and "g_idx" so that group ids are
# increasing
sort_indices = torch.empty(0, dtype=torch.int, device=w.device)
if act_order:
q_w, g_idx, sort_indices = sort_weights(q_w, g_idx)
# Reformat to marlin
weight_perm = get_weight_perm(num_bits)
marlin_q_w = marlin_weights(q_w, size_k, size_n, num_bits, weight_perm)
marlin_s = marlin_permute_scales(s, size_k, size_n, group_size)
# Create result
res_list = [w_ref, marlin_q_w, marlin_s, g_idx, sort_indices, rand_perm]
for i in range(len(res_list)):
res_list[i] = res_list[i].to(w.device)
return res_list
def awq_marlin_quantize(w: torch.Tensor, quant_type: ScalarType, group_size: int):
size_k, size_n = w.shape
# Normalize group_size
if group_size == -1:
group_size = size_k
assert group_size <= size_k
# Detect num groups
assert size_k % group_size == 0
num_groups = size_k // group_size
# Quantize with zp
w_ref, q_w, s, zp = quantize_weights(w, quant_type, group_size, zero_points=True)
# Reformat to marlin
weight_perm = get_weight_perm(quant_type.size_bits)
marlin_q_w = marlin_weights(q_w, size_k, size_n, quant_type.size_bits, weight_perm)
marlin_s = marlin_permute_scales(s, size_k, size_n, group_size)
marlin_zp = marlin_zero_points(zp, num_groups, size_n, quant_type.size_bits)
# Create result
res_list = [w_ref, marlin_q_w, marlin_s, marlin_zp]
for i in range(len(res_list)):
res_list[i] = res_list[i].to(w.device)
return res_list