danieldk HF Staff commited on
Commit
82ffd1f
·
1 Parent(s): dfa7d18

Build (x86_64)

Browse files
Files changed (50) hide show
  1. build/torch26-cxx11-cu118-x86_64-linux/quantization/__init__.py +9 -0
  2. build/torch26-cxx11-cu118-x86_64-linux/quantization/_ops.py +3 -3
  3. build/torch26-cxx11-cu118-x86_64-linux/quantization/{_quantization_e8730d8_dirty.abi3.so → _quantization_dfa7d18.abi3.so} +2 -2
  4. build/torch26-cxx11-cu118-x86_64-linux/quantization/compressed_tensors.py +3 -1
  5. build/torch26-cxx11-cu118-x86_64-linux/quantization/platforms.py +35 -0
  6. build/torch26-cxx11-cu124-x86_64-linux/quantization/__init__.py +9 -0
  7. build/torch26-cxx11-cu124-x86_64-linux/quantization/_ops.py +3 -3
  8. build/torch26-cxx11-cu124-x86_64-linux/quantization/{_quantization_e8730d8_dirty.abi3.so → _quantization_dfa7d18.abi3.so} +2 -2
  9. build/torch26-cxx11-cu124-x86_64-linux/quantization/compressed_tensors.py +3 -1
  10. build/torch26-cxx11-cu124-x86_64-linux/quantization/platforms.py +35 -0
  11. build/torch26-cxx11-cu126-x86_64-linux/quantization/__init__.py +9 -0
  12. build/torch26-cxx11-cu126-x86_64-linux/quantization/_ops.py +3 -3
  13. build/torch26-cxx11-cu126-x86_64-linux/quantization/{_quantization_e8730d8_dirty.abi3.so → _quantization_dfa7d18.abi3.so} +2 -2
  14. build/torch26-cxx11-cu126-x86_64-linux/quantization/compressed_tensors.py +3 -1
  15. build/torch26-cxx11-cu126-x86_64-linux/quantization/platforms.py +35 -0
  16. build/torch26-cxx98-cu118-x86_64-linux/quantization/__init__.py +9 -0
  17. build/torch26-cxx98-cu118-x86_64-linux/quantization/_ops.py +3 -3
  18. build/torch26-cxx98-cu118-x86_64-linux/quantization/{_quantization_e8730d8_dirty.abi3.so → _quantization_dfa7d18.abi3.so} +2 -2
  19. build/torch26-cxx98-cu118-x86_64-linux/quantization/compressed_tensors.py +3 -1
  20. build/torch26-cxx98-cu118-x86_64-linux/quantization/platforms.py +35 -0
  21. build/torch26-cxx98-cu124-x86_64-linux/quantization/__init__.py +9 -0
  22. build/torch26-cxx98-cu124-x86_64-linux/quantization/_ops.py +3 -3
  23. build/torch26-cxx98-cu124-x86_64-linux/quantization/_quantization_dfa7d18.abi3.so +3 -0
  24. build/torch26-cxx98-cu124-x86_64-linux/quantization/_quantization_e8730d8_dirty.abi3.so +0 -3
  25. build/torch26-cxx98-cu124-x86_64-linux/quantization/compressed_tensors.py +3 -1
  26. build/torch26-cxx98-cu124-x86_64-linux/quantization/platforms.py +35 -0
  27. build/torch26-cxx98-cu126-x86_64-linux/quantization/__init__.py +9 -0
  28. build/torch26-cxx98-cu126-x86_64-linux/quantization/_ops.py +3 -3
  29. build/torch26-cxx98-cu126-x86_64-linux/quantization/_quantization_dfa7d18.abi3.so +3 -0
  30. build/torch26-cxx98-cu126-x86_64-linux/quantization/_quantization_e8730d8_dirty.abi3.so +0 -3
  31. build/torch26-cxx98-cu126-x86_64-linux/quantization/compressed_tensors.py +3 -1
  32. build/torch26-cxx98-cu126-x86_64-linux/quantization/platforms.py +35 -0
  33. build/torch27-cxx11-cu118-x86_64-linux/quantization/__init__.py +9 -0
  34. build/torch27-cxx11-cu118-x86_64-linux/quantization/_ops.py +3 -3
  35. build/torch27-cxx11-cu118-x86_64-linux/quantization/_quantization_dfa7d18.abi3.so +3 -0
  36. build/torch27-cxx11-cu118-x86_64-linux/quantization/_quantization_e8730d8_dirty.abi3.so +0 -3
  37. build/torch27-cxx11-cu118-x86_64-linux/quantization/compressed_tensors.py +3 -1
  38. build/torch27-cxx11-cu118-x86_64-linux/quantization/platforms.py +35 -0
  39. build/torch27-cxx11-cu126-x86_64-linux/quantization/__init__.py +9 -0
  40. build/torch27-cxx11-cu126-x86_64-linux/quantization/_ops.py +3 -3
  41. build/torch27-cxx11-cu126-x86_64-linux/quantization/_quantization_dfa7d18.abi3.so +3 -0
  42. build/torch27-cxx11-cu126-x86_64-linux/quantization/_quantization_e8730d8_dirty.abi3.so +0 -3
  43. build/torch27-cxx11-cu126-x86_64-linux/quantization/compressed_tensors.py +3 -1
  44. build/torch27-cxx11-cu126-x86_64-linux/quantization/platforms.py +35 -0
  45. build/torch27-cxx11-cu128-x86_64-linux/quantization/__init__.py +9 -0
  46. build/torch27-cxx11-cu128-x86_64-linux/quantization/_ops.py +3 -3
  47. build/torch27-cxx11-cu128-x86_64-linux/quantization/_quantization_dfa7d18.abi3.so +3 -0
  48. build/torch27-cxx11-cu128-x86_64-linux/quantization/_quantization_e8730d8_dirty.abi3.so +0 -3
  49. build/torch27-cxx11-cu128-x86_64-linux/quantization/compressed_tensors.py +3 -1
  50. build/torch27-cxx11-cu128-x86_64-linux/quantization/platforms.py +35 -0
build/torch26-cxx11-cu118-x86_64-linux/quantization/__init__.py CHANGED
@@ -19,6 +19,11 @@ from .scalar_type import (
19
  )
20
  from ._ops import ops
21
 
 
 
 
 
 
22
 
23
  __all__ = [
24
  "ScalarType",
@@ -32,7 +37,11 @@ __all__ = [
32
  "gptq_marlin_repack",
33
  "marlin_gemm",
34
  "marlin_qqq_gemm",
 
 
 
35
  "ops",
 
36
  "scalar_types",
37
  "scaled_fp8_quant",
38
  "scaled_int8_quant",
 
19
  )
20
  from ._ops import ops
21
 
22
+ from .utils import marlin_utils
23
+ from .utils import marlin_utils_fp4
24
+ from .utils import marlin_utils_fp8
25
+ from .utils import quant_utils
26
+
27
 
28
  __all__ = [
29
  "ScalarType",
 
37
  "gptq_marlin_repack",
38
  "marlin_gemm",
39
  "marlin_qqq_gemm",
40
+ "marlin_utils",
41
+ "marlin_utils_fp4",
42
+ "marlin_utils_fp8",
43
  "ops",
44
+ "quant_utils",
45
  "scalar_types",
46
  "scaled_fp8_quant",
47
  "scaled_int8_quant",
build/torch26-cxx11-cu118-x86_64-linux/quantization/_ops.py CHANGED
@@ -1,9 +1,9 @@
1
  import torch
2
- from . import _quantization_e8730d8_dirty
3
- ops = torch.ops._quantization_e8730d8_dirty
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
- return f"_quantization_e8730d8_dirty::{op_name}"
 
1
  import torch
2
+ from . import _quantization_dfa7d18
3
+ ops = torch.ops._quantization_dfa7d18
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
+ return f"_quantization_dfa7d18::{op_name}"
build/torch26-cxx11-cu118-x86_64-linux/quantization/{_quantization_e8730d8_dirty.abi3.so → _quantization_dfa7d18.abi3.so} RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:57e3f40d3bd58464cc005538c0d5376d64d7b6051f819f34c024f5b1940afb0f
3
- size 155760312
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:05b3dbcc1c3200458ec526bc95169a8b286704dbbfe93b1b5bb580d490be4f3d
3
+ size 155751904
build/torch26-cxx11-cu118-x86_64-linux/quantization/compressed_tensors.py CHANGED
@@ -1,8 +1,10 @@
1
- from typing import Optional, Tuple
2
 
3
  import torch
4
 
5
  from ._ops import ops
 
 
6
 
7
  # fp8
8
  def scaled_fp8_quant(
 
1
+ from typing import Optional, Union
2
 
3
  import torch
4
 
5
  from ._ops import ops
6
+ from .platforms import current_platform
7
+
8
 
9
  # fp8
10
  def scaled_fp8_quant(
build/torch26-cxx11-cu118-x86_64-linux/quantization/platforms.py CHANGED
@@ -27,6 +27,29 @@ class DeviceCapability(NamedTuple):
27
  class Platform(ABC):
28
  simple_compile_backend: str = "inductor"
29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
  @classmethod
31
  @abstractmethod
32
  def get_device_name(cls, device_id: int = 0) -> str: ...
@@ -51,6 +74,18 @@ class CudaPlatform(Platform):
51
 
52
 
53
  class RocmPlatform(Platform):
 
 
 
 
 
 
 
 
 
 
 
 
54
  @classmethod
55
  @lru_cache(maxsize=8)
56
  def get_device_capability(cls, device_id: int = 0) -> DeviceCapability:
 
27
  class Platform(ABC):
28
  simple_compile_backend: str = "inductor"
29
 
30
+ @classmethod
31
+ def fp8_dtype(cls) -> torch.dtype:
32
+ """
33
+ Returns the preferred FP8 type on the current platform.
34
+
35
+ See the documentation for is_fp8_fnuz for details.
36
+ """
37
+ return torch.float8_e4m3fn
38
+
39
+ @classmethod
40
+ def is_fp8_fnuz(cls) -> bool:
41
+ """
42
+ Returns whether the preferred FP8 type is FNUZ on the current platform.
43
+
44
+ There are two representations of FP8, OCP FP8 and FNUZ FP8.
45
+ The OCP specification can be found at https://tinyurl.com/b7jvwpft.
46
+ The FNUZ specification can be found at https://tinyurl.com/5n6hwwu5.
47
+
48
+ AMD's MI300 and MI325 have native hardware support for FNUZ. All other
49
+ hardware has converged on the OCP FP8 standard.
50
+ """
51
+ return False
52
+
53
  @classmethod
54
  @abstractmethod
55
  def get_device_name(cls, device_id: int = 0) -> str: ...
 
74
 
75
 
76
  class RocmPlatform(Platform):
77
+ @classmethod
78
+ def fp8_dtype(cls) -> torch.dtype:
79
+ if cls.is_fp8_fnuz():
80
+ return torch.float8_e4m3fnuz
81
+ else:
82
+ return torch.float8_e4m3fn
83
+
84
+ @classmethod
85
+ def is_fp8_fnuz(cls) -> bool:
86
+ # only device 0 is checked, this assumes MI300 platforms are homogeneous
87
+ return "gfx94" in torch.cuda.get_device_properties(0).gcnArchName
88
+
89
  @classmethod
90
  @lru_cache(maxsize=8)
91
  def get_device_capability(cls, device_id: int = 0) -> DeviceCapability:
build/torch26-cxx11-cu124-x86_64-linux/quantization/__init__.py CHANGED
@@ -19,6 +19,11 @@ from .scalar_type import (
19
  )
20
  from ._ops import ops
21
 
 
 
 
 
 
22
 
23
  __all__ = [
24
  "ScalarType",
@@ -32,7 +37,11 @@ __all__ = [
32
  "gptq_marlin_repack",
33
  "marlin_gemm",
34
  "marlin_qqq_gemm",
 
 
 
35
  "ops",
 
36
  "scalar_types",
37
  "scaled_fp8_quant",
38
  "scaled_int8_quant",
 
19
  )
20
  from ._ops import ops
21
 
22
+ from .utils import marlin_utils
23
+ from .utils import marlin_utils_fp4
24
+ from .utils import marlin_utils_fp8
25
+ from .utils import quant_utils
26
+
27
 
28
  __all__ = [
29
  "ScalarType",
 
37
  "gptq_marlin_repack",
38
  "marlin_gemm",
39
  "marlin_qqq_gemm",
40
+ "marlin_utils",
41
+ "marlin_utils_fp4",
42
+ "marlin_utils_fp8",
43
  "ops",
44
+ "quant_utils",
45
  "scalar_types",
46
  "scaled_fp8_quant",
47
  "scaled_int8_quant",
build/torch26-cxx11-cu124-x86_64-linux/quantization/_ops.py CHANGED
@@ -1,9 +1,9 @@
1
  import torch
2
- from . import _quantization_e8730d8_dirty
3
- ops = torch.ops._quantization_e8730d8_dirty
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
- return f"_quantization_e8730d8_dirty::{op_name}"
 
1
  import torch
2
+ from . import _quantization_dfa7d18
3
+ ops = torch.ops._quantization_dfa7d18
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
+ return f"_quantization_dfa7d18::{op_name}"
build/torch26-cxx11-cu124-x86_64-linux/quantization/{_quantization_e8730d8_dirty.abi3.so → _quantization_dfa7d18.abi3.so} RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b9f064f096a8814f4e1441a58dd10979e111c6dce94fbf11a381a0463150577a
3
- size 159574104
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b5dc49e9b5709f18d3e12ab2d76e37743c31cb2602d219e80173a9c5c0ba1acd
3
+ size 159574040
build/torch26-cxx11-cu124-x86_64-linux/quantization/compressed_tensors.py CHANGED
@@ -1,8 +1,10 @@
1
- from typing import Optional, Tuple
2
 
3
  import torch
4
 
5
  from ._ops import ops
 
 
6
 
7
  # fp8
8
  def scaled_fp8_quant(
 
1
+ from typing import Optional, Union
2
 
3
  import torch
4
 
5
  from ._ops import ops
6
+ from .platforms import current_platform
7
+
8
 
9
  # fp8
10
  def scaled_fp8_quant(
build/torch26-cxx11-cu124-x86_64-linux/quantization/platforms.py CHANGED
@@ -27,6 +27,29 @@ class DeviceCapability(NamedTuple):
27
  class Platform(ABC):
28
  simple_compile_backend: str = "inductor"
29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
  @classmethod
31
  @abstractmethod
32
  def get_device_name(cls, device_id: int = 0) -> str: ...
@@ -51,6 +74,18 @@ class CudaPlatform(Platform):
51
 
52
 
53
  class RocmPlatform(Platform):
 
 
 
 
 
 
 
 
 
 
 
 
54
  @classmethod
55
  @lru_cache(maxsize=8)
56
  def get_device_capability(cls, device_id: int = 0) -> DeviceCapability:
 
27
  class Platform(ABC):
28
  simple_compile_backend: str = "inductor"
29
 
30
+ @classmethod
31
+ def fp8_dtype(cls) -> torch.dtype:
32
+ """
33
+ Returns the preferred FP8 type on the current platform.
34
+
35
+ See the documentation for is_fp8_fnuz for details.
36
+ """
37
+ return torch.float8_e4m3fn
38
+
39
+ @classmethod
40
+ def is_fp8_fnuz(cls) -> bool:
41
+ """
42
+ Returns whether the preferred FP8 type is FNUZ on the current platform.
43
+
44
+ There are two representations of FP8, OCP FP8 and FNUZ FP8.
45
+ The OCP specification can be found at https://tinyurl.com/b7jvwpft.
46
+ The FNUZ specification can be found at https://tinyurl.com/5n6hwwu5.
47
+
48
+ AMD's MI300 and MI325 have native hardware support for FNUZ. All other
49
+ hardware has converged on the OCP FP8 standard.
50
+ """
51
+ return False
52
+
53
  @classmethod
54
  @abstractmethod
55
  def get_device_name(cls, device_id: int = 0) -> str: ...
 
74
 
75
 
76
  class RocmPlatform(Platform):
77
+ @classmethod
78
+ def fp8_dtype(cls) -> torch.dtype:
79
+ if cls.is_fp8_fnuz():
80
+ return torch.float8_e4m3fnuz
81
+ else:
82
+ return torch.float8_e4m3fn
83
+
84
+ @classmethod
85
+ def is_fp8_fnuz(cls) -> bool:
86
+ # only device 0 is checked, this assumes MI300 platforms are homogeneous
87
+ return "gfx94" in torch.cuda.get_device_properties(0).gcnArchName
88
+
89
  @classmethod
90
  @lru_cache(maxsize=8)
91
  def get_device_capability(cls, device_id: int = 0) -> DeviceCapability:
build/torch26-cxx11-cu126-x86_64-linux/quantization/__init__.py CHANGED
@@ -19,6 +19,11 @@ from .scalar_type import (
19
  )
20
  from ._ops import ops
21
 
 
 
 
 
 
22
 
23
  __all__ = [
24
  "ScalarType",
@@ -32,7 +37,11 @@ __all__ = [
32
  "gptq_marlin_repack",
33
  "marlin_gemm",
34
  "marlin_qqq_gemm",
 
 
 
35
  "ops",
 
36
  "scalar_types",
37
  "scaled_fp8_quant",
38
  "scaled_int8_quant",
 
19
  )
20
  from ._ops import ops
21
 
22
+ from .utils import marlin_utils
23
+ from .utils import marlin_utils_fp4
24
+ from .utils import marlin_utils_fp8
25
+ from .utils import quant_utils
26
+
27
 
28
  __all__ = [
29
  "ScalarType",
 
37
  "gptq_marlin_repack",
38
  "marlin_gemm",
39
  "marlin_qqq_gemm",
40
+ "marlin_utils",
41
+ "marlin_utils_fp4",
42
+ "marlin_utils_fp8",
43
  "ops",
44
+ "quant_utils",
45
  "scalar_types",
46
  "scaled_fp8_quant",
47
  "scaled_int8_quant",
build/torch26-cxx11-cu126-x86_64-linux/quantization/_ops.py CHANGED
@@ -1,9 +1,9 @@
1
  import torch
2
- from . import _quantization_e8730d8_dirty
3
- ops = torch.ops._quantization_e8730d8_dirty
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
- return f"_quantization_e8730d8_dirty::{op_name}"
 
1
  import torch
2
+ from . import _quantization_dfa7d18
3
+ ops = torch.ops._quantization_dfa7d18
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
+ return f"_quantization_dfa7d18::{op_name}"
build/torch26-cxx11-cu126-x86_64-linux/quantization/{_quantization_e8730d8_dirty.abi3.so → _quantization_dfa7d18.abi3.so} RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1eb61783122b0f53ed36db827c8ea9cf1da094f22ca0433c575d18993565531f
3
- size 160276600
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af7fad3054f0981d175aa7dcabf9dbe3c556ba0dcee7f20a2c104abd17dce7a5
3
+ size 160280624
build/torch26-cxx11-cu126-x86_64-linux/quantization/compressed_tensors.py CHANGED
@@ -1,8 +1,10 @@
1
- from typing import Optional, Tuple
2
 
3
  import torch
4
 
5
  from ._ops import ops
 
 
6
 
7
  # fp8
8
  def scaled_fp8_quant(
 
1
+ from typing import Optional, Union
2
 
3
  import torch
4
 
5
  from ._ops import ops
6
+ from .platforms import current_platform
7
+
8
 
9
  # fp8
10
  def scaled_fp8_quant(
build/torch26-cxx11-cu126-x86_64-linux/quantization/platforms.py CHANGED
@@ -27,6 +27,29 @@ class DeviceCapability(NamedTuple):
27
  class Platform(ABC):
28
  simple_compile_backend: str = "inductor"
29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
  @classmethod
31
  @abstractmethod
32
  def get_device_name(cls, device_id: int = 0) -> str: ...
@@ -51,6 +74,18 @@ class CudaPlatform(Platform):
51
 
52
 
53
  class RocmPlatform(Platform):
 
 
 
 
 
 
 
 
 
 
 
 
54
  @classmethod
55
  @lru_cache(maxsize=8)
56
  def get_device_capability(cls, device_id: int = 0) -> DeviceCapability:
 
27
  class Platform(ABC):
28
  simple_compile_backend: str = "inductor"
29
 
30
+ @classmethod
31
+ def fp8_dtype(cls) -> torch.dtype:
32
+ """
33
+ Returns the preferred FP8 type on the current platform.
34
+
35
+ See the documentation for is_fp8_fnuz for details.
36
+ """
37
+ return torch.float8_e4m3fn
38
+
39
+ @classmethod
40
+ def is_fp8_fnuz(cls) -> bool:
41
+ """
42
+ Returns whether the preferred FP8 type is FNUZ on the current platform.
43
+
44
+ There are two representations of FP8, OCP FP8 and FNUZ FP8.
45
+ The OCP specification can be found at https://tinyurl.com/b7jvwpft.
46
+ The FNUZ specification can be found at https://tinyurl.com/5n6hwwu5.
47
+
48
+ AMD's MI300 and MI325 have native hardware support for FNUZ. All other
49
+ hardware has converged on the OCP FP8 standard.
50
+ """
51
+ return False
52
+
53
  @classmethod
54
  @abstractmethod
55
  def get_device_name(cls, device_id: int = 0) -> str: ...
 
74
 
75
 
76
  class RocmPlatform(Platform):
77
+ @classmethod
78
+ def fp8_dtype(cls) -> torch.dtype:
79
+ if cls.is_fp8_fnuz():
80
+ return torch.float8_e4m3fnuz
81
+ else:
82
+ return torch.float8_e4m3fn
83
+
84
+ @classmethod
85
+ def is_fp8_fnuz(cls) -> bool:
86
+ # only device 0 is checked, this assumes MI300 platforms are homogeneous
87
+ return "gfx94" in torch.cuda.get_device_properties(0).gcnArchName
88
+
89
  @classmethod
90
  @lru_cache(maxsize=8)
91
  def get_device_capability(cls, device_id: int = 0) -> DeviceCapability:
build/torch26-cxx98-cu118-x86_64-linux/quantization/__init__.py CHANGED
@@ -19,6 +19,11 @@ from .scalar_type import (
19
  )
20
  from ._ops import ops
21
 
 
 
 
 
 
22
 
23
  __all__ = [
24
  "ScalarType",
@@ -32,7 +37,11 @@ __all__ = [
32
  "gptq_marlin_repack",
33
  "marlin_gemm",
34
  "marlin_qqq_gemm",
 
 
 
35
  "ops",
 
36
  "scalar_types",
37
  "scaled_fp8_quant",
38
  "scaled_int8_quant",
 
19
  )
20
  from ._ops import ops
21
 
22
+ from .utils import marlin_utils
23
+ from .utils import marlin_utils_fp4
24
+ from .utils import marlin_utils_fp8
25
+ from .utils import quant_utils
26
+
27
 
28
  __all__ = [
29
  "ScalarType",
 
37
  "gptq_marlin_repack",
38
  "marlin_gemm",
39
  "marlin_qqq_gemm",
40
+ "marlin_utils",
41
+ "marlin_utils_fp4",
42
+ "marlin_utils_fp8",
43
  "ops",
44
+ "quant_utils",
45
  "scalar_types",
46
  "scaled_fp8_quant",
47
  "scaled_int8_quant",
build/torch26-cxx98-cu118-x86_64-linux/quantization/_ops.py CHANGED
@@ -1,9 +1,9 @@
1
  import torch
2
- from . import _quantization_e8730d8_dirty
3
- ops = torch.ops._quantization_e8730d8_dirty
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
- return f"_quantization_e8730d8_dirty::{op_name}"
 
1
  import torch
2
+ from . import _quantization_dfa7d18
3
+ ops = torch.ops._quantization_dfa7d18
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
+ return f"_quantization_dfa7d18::{op_name}"
build/torch26-cxx98-cu118-x86_64-linux/quantization/{_quantization_e8730d8_dirty.abi3.so → _quantization_dfa7d18.abi3.so} RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e6c2a3029d72467b8bf2fbfcf8e999683e58ab0a1c0eb4bc5fda1d92cfcc179d
3
- size 155740048
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9736b3b73f06d4fd9881fd417dbe72aa7e5e4cbc2845ca247b9427b2b7f2b858
3
+ size 155739832
build/torch26-cxx98-cu118-x86_64-linux/quantization/compressed_tensors.py CHANGED
@@ -1,8 +1,10 @@
1
- from typing import Optional, Tuple
2
 
3
  import torch
4
 
5
  from ._ops import ops
 
 
6
 
7
  # fp8
8
  def scaled_fp8_quant(
 
1
+ from typing import Optional, Union
2
 
3
  import torch
4
 
5
  from ._ops import ops
6
+ from .platforms import current_platform
7
+
8
 
9
  # fp8
10
  def scaled_fp8_quant(
build/torch26-cxx98-cu118-x86_64-linux/quantization/platforms.py CHANGED
@@ -27,6 +27,29 @@ class DeviceCapability(NamedTuple):
27
  class Platform(ABC):
28
  simple_compile_backend: str = "inductor"
29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
  @classmethod
31
  @abstractmethod
32
  def get_device_name(cls, device_id: int = 0) -> str: ...
@@ -51,6 +74,18 @@ class CudaPlatform(Platform):
51
 
52
 
53
  class RocmPlatform(Platform):
 
 
 
 
 
 
 
 
 
 
 
 
54
  @classmethod
55
  @lru_cache(maxsize=8)
56
  def get_device_capability(cls, device_id: int = 0) -> DeviceCapability:
 
27
  class Platform(ABC):
28
  simple_compile_backend: str = "inductor"
29
 
30
+ @classmethod
31
+ def fp8_dtype(cls) -> torch.dtype:
32
+ """
33
+ Returns the preferred FP8 type on the current platform.
34
+
35
+ See the documentation for is_fp8_fnuz for details.
36
+ """
37
+ return torch.float8_e4m3fn
38
+
39
+ @classmethod
40
+ def is_fp8_fnuz(cls) -> bool:
41
+ """
42
+ Returns whether the preferred FP8 type is FNUZ on the current platform.
43
+
44
+ There are two representations of FP8, OCP FP8 and FNUZ FP8.
45
+ The OCP specification can be found at https://tinyurl.com/b7jvwpft.
46
+ The FNUZ specification can be found at https://tinyurl.com/5n6hwwu5.
47
+
48
+ AMD's MI300 and MI325 have native hardware support for FNUZ. All other
49
+ hardware has converged on the OCP FP8 standard.
50
+ """
51
+ return False
52
+
53
  @classmethod
54
  @abstractmethod
55
  def get_device_name(cls, device_id: int = 0) -> str: ...
 
74
 
75
 
76
  class RocmPlatform(Platform):
77
+ @classmethod
78
+ def fp8_dtype(cls) -> torch.dtype:
79
+ if cls.is_fp8_fnuz():
80
+ return torch.float8_e4m3fnuz
81
+ else:
82
+ return torch.float8_e4m3fn
83
+
84
+ @classmethod
85
+ def is_fp8_fnuz(cls) -> bool:
86
+ # only device 0 is checked, this assumes MI300 platforms are homogeneous
87
+ return "gfx94" in torch.cuda.get_device_properties(0).gcnArchName
88
+
89
  @classmethod
90
  @lru_cache(maxsize=8)
91
  def get_device_capability(cls, device_id: int = 0) -> DeviceCapability:
build/torch26-cxx98-cu124-x86_64-linux/quantization/__init__.py CHANGED
@@ -19,6 +19,11 @@ from .scalar_type import (
19
  )
20
  from ._ops import ops
21
 
 
 
 
 
 
22
 
23
  __all__ = [
24
  "ScalarType",
@@ -32,7 +37,11 @@ __all__ = [
32
  "gptq_marlin_repack",
33
  "marlin_gemm",
34
  "marlin_qqq_gemm",
 
 
 
35
  "ops",
 
36
  "scalar_types",
37
  "scaled_fp8_quant",
38
  "scaled_int8_quant",
 
19
  )
20
  from ._ops import ops
21
 
22
+ from .utils import marlin_utils
23
+ from .utils import marlin_utils_fp4
24
+ from .utils import marlin_utils_fp8
25
+ from .utils import quant_utils
26
+
27
 
28
  __all__ = [
29
  "ScalarType",
 
37
  "gptq_marlin_repack",
38
  "marlin_gemm",
39
  "marlin_qqq_gemm",
40
+ "marlin_utils",
41
+ "marlin_utils_fp4",
42
+ "marlin_utils_fp8",
43
  "ops",
44
+ "quant_utils",
45
  "scalar_types",
46
  "scaled_fp8_quant",
47
  "scaled_int8_quant",
build/torch26-cxx98-cu124-x86_64-linux/quantization/_ops.py CHANGED
@@ -1,9 +1,9 @@
1
  import torch
2
- from . import _quantization_e8730d8_dirty
3
- ops = torch.ops._quantization_e8730d8_dirty
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
- return f"_quantization_e8730d8_dirty::{op_name}"
 
1
  import torch
2
+ from . import _quantization_dfa7d18
3
+ ops = torch.ops._quantization_dfa7d18
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
+ return f"_quantization_dfa7d18::{op_name}"
build/torch26-cxx98-cu124-x86_64-linux/quantization/_quantization_dfa7d18.abi3.so ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3fa6583683394285f5d1c65f808a967b2db197831a097c638400b06a544187ba
3
+ size 159570240
build/torch26-cxx98-cu124-x86_64-linux/quantization/_quantization_e8730d8_dirty.abi3.so DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:2932ba43dd1ae4848b3077dada99be0088023a56e7b36bac9e863a1977249088
3
- size 159578496
 
 
 
 
build/torch26-cxx98-cu124-x86_64-linux/quantization/compressed_tensors.py CHANGED
@@ -1,8 +1,10 @@
1
- from typing import Optional, Tuple
2
 
3
  import torch
4
 
5
  from ._ops import ops
 
 
6
 
7
  # fp8
8
  def scaled_fp8_quant(
 
1
+ from typing import Optional, Union
2
 
3
  import torch
4
 
5
  from ._ops import ops
6
+ from .platforms import current_platform
7
+
8
 
9
  # fp8
10
  def scaled_fp8_quant(
build/torch26-cxx98-cu124-x86_64-linux/quantization/platforms.py CHANGED
@@ -27,6 +27,29 @@ class DeviceCapability(NamedTuple):
27
  class Platform(ABC):
28
  simple_compile_backend: str = "inductor"
29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
  @classmethod
31
  @abstractmethod
32
  def get_device_name(cls, device_id: int = 0) -> str: ...
@@ -51,6 +74,18 @@ class CudaPlatform(Platform):
51
 
52
 
53
  class RocmPlatform(Platform):
 
 
 
 
 
 
 
 
 
 
 
 
54
  @classmethod
55
  @lru_cache(maxsize=8)
56
  def get_device_capability(cls, device_id: int = 0) -> DeviceCapability:
 
27
  class Platform(ABC):
28
  simple_compile_backend: str = "inductor"
29
 
30
+ @classmethod
31
+ def fp8_dtype(cls) -> torch.dtype:
32
+ """
33
+ Returns the preferred FP8 type on the current platform.
34
+
35
+ See the documentation for is_fp8_fnuz for details.
36
+ """
37
+ return torch.float8_e4m3fn
38
+
39
+ @classmethod
40
+ def is_fp8_fnuz(cls) -> bool:
41
+ """
42
+ Returns whether the preferred FP8 type is FNUZ on the current platform.
43
+
44
+ There are two representations of FP8, OCP FP8 and FNUZ FP8.
45
+ The OCP specification can be found at https://tinyurl.com/b7jvwpft.
46
+ The FNUZ specification can be found at https://tinyurl.com/5n6hwwu5.
47
+
48
+ AMD's MI300 and MI325 have native hardware support for FNUZ. All other
49
+ hardware has converged on the OCP FP8 standard.
50
+ """
51
+ return False
52
+
53
  @classmethod
54
  @abstractmethod
55
  def get_device_name(cls, device_id: int = 0) -> str: ...
 
74
 
75
 
76
  class RocmPlatform(Platform):
77
+ @classmethod
78
+ def fp8_dtype(cls) -> torch.dtype:
79
+ if cls.is_fp8_fnuz():
80
+ return torch.float8_e4m3fnuz
81
+ else:
82
+ return torch.float8_e4m3fn
83
+
84
+ @classmethod
85
+ def is_fp8_fnuz(cls) -> bool:
86
+ # only device 0 is checked, this assumes MI300 platforms are homogeneous
87
+ return "gfx94" in torch.cuda.get_device_properties(0).gcnArchName
88
+
89
  @classmethod
90
  @lru_cache(maxsize=8)
91
  def get_device_capability(cls, device_id: int = 0) -> DeviceCapability:
build/torch26-cxx98-cu126-x86_64-linux/quantization/__init__.py CHANGED
@@ -19,6 +19,11 @@ from .scalar_type import (
19
  )
20
  from ._ops import ops
21
 
 
 
 
 
 
22
 
23
  __all__ = [
24
  "ScalarType",
@@ -32,7 +37,11 @@ __all__ = [
32
  "gptq_marlin_repack",
33
  "marlin_gemm",
34
  "marlin_qqq_gemm",
 
 
 
35
  "ops",
 
36
  "scalar_types",
37
  "scaled_fp8_quant",
38
  "scaled_int8_quant",
 
19
  )
20
  from ._ops import ops
21
 
22
+ from .utils import marlin_utils
23
+ from .utils import marlin_utils_fp4
24
+ from .utils import marlin_utils_fp8
25
+ from .utils import quant_utils
26
+
27
 
28
  __all__ = [
29
  "ScalarType",
 
37
  "gptq_marlin_repack",
38
  "marlin_gemm",
39
  "marlin_qqq_gemm",
40
+ "marlin_utils",
41
+ "marlin_utils_fp4",
42
+ "marlin_utils_fp8",
43
  "ops",
44
+ "quant_utils",
45
  "scalar_types",
46
  "scaled_fp8_quant",
47
  "scaled_int8_quant",
build/torch26-cxx98-cu126-x86_64-linux/quantization/_ops.py CHANGED
@@ -1,9 +1,9 @@
1
  import torch
2
- from . import _quantization_e8730d8_dirty
3
- ops = torch.ops._quantization_e8730d8_dirty
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
- return f"_quantization_e8730d8_dirty::{op_name}"
 
1
  import torch
2
+ from . import _quantization_dfa7d18
3
+ ops = torch.ops._quantization_dfa7d18
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
+ return f"_quantization_dfa7d18::{op_name}"
build/torch26-cxx98-cu126-x86_64-linux/quantization/_quantization_dfa7d18.abi3.so ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:027e39213c07a0d90a7cbd3ea7f7e7415d9a4d561e2d774ab6212512e0452007
3
+ size 160278472
build/torch26-cxx98-cu126-x86_64-linux/quantization/_quantization_e8730d8_dirty.abi3.so DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:1dcf28c2d636d90cd8af8bc7b44a3b7d5f5a1a599e7e1c03b06f3800d40f5a60
3
- size 160274448
 
 
 
 
build/torch26-cxx98-cu126-x86_64-linux/quantization/compressed_tensors.py CHANGED
@@ -1,8 +1,10 @@
1
- from typing import Optional, Tuple
2
 
3
  import torch
4
 
5
  from ._ops import ops
 
 
6
 
7
  # fp8
8
  def scaled_fp8_quant(
 
1
+ from typing import Optional, Union
2
 
3
  import torch
4
 
5
  from ._ops import ops
6
+ from .platforms import current_platform
7
+
8
 
9
  # fp8
10
  def scaled_fp8_quant(
build/torch26-cxx98-cu126-x86_64-linux/quantization/platforms.py CHANGED
@@ -27,6 +27,29 @@ class DeviceCapability(NamedTuple):
27
  class Platform(ABC):
28
  simple_compile_backend: str = "inductor"
29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
  @classmethod
31
  @abstractmethod
32
  def get_device_name(cls, device_id: int = 0) -> str: ...
@@ -51,6 +74,18 @@ class CudaPlatform(Platform):
51
 
52
 
53
  class RocmPlatform(Platform):
 
 
 
 
 
 
 
 
 
 
 
 
54
  @classmethod
55
  @lru_cache(maxsize=8)
56
  def get_device_capability(cls, device_id: int = 0) -> DeviceCapability:
 
27
  class Platform(ABC):
28
  simple_compile_backend: str = "inductor"
29
 
30
+ @classmethod
31
+ def fp8_dtype(cls) -> torch.dtype:
32
+ """
33
+ Returns the preferred FP8 type on the current platform.
34
+
35
+ See the documentation for is_fp8_fnuz for details.
36
+ """
37
+ return torch.float8_e4m3fn
38
+
39
+ @classmethod
40
+ def is_fp8_fnuz(cls) -> bool:
41
+ """
42
+ Returns whether the preferred FP8 type is FNUZ on the current platform.
43
+
44
+ There are two representations of FP8, OCP FP8 and FNUZ FP8.
45
+ The OCP specification can be found at https://tinyurl.com/b7jvwpft.
46
+ The FNUZ specification can be found at https://tinyurl.com/5n6hwwu5.
47
+
48
+ AMD's MI300 and MI325 have native hardware support for FNUZ. All other
49
+ hardware has converged on the OCP FP8 standard.
50
+ """
51
+ return False
52
+
53
  @classmethod
54
  @abstractmethod
55
  def get_device_name(cls, device_id: int = 0) -> str: ...
 
74
 
75
 
76
  class RocmPlatform(Platform):
77
+ @classmethod
78
+ def fp8_dtype(cls) -> torch.dtype:
79
+ if cls.is_fp8_fnuz():
80
+ return torch.float8_e4m3fnuz
81
+ else:
82
+ return torch.float8_e4m3fn
83
+
84
+ @classmethod
85
+ def is_fp8_fnuz(cls) -> bool:
86
+ # only device 0 is checked, this assumes MI300 platforms are homogeneous
87
+ return "gfx94" in torch.cuda.get_device_properties(0).gcnArchName
88
+
89
  @classmethod
90
  @lru_cache(maxsize=8)
91
  def get_device_capability(cls, device_id: int = 0) -> DeviceCapability:
build/torch27-cxx11-cu118-x86_64-linux/quantization/__init__.py CHANGED
@@ -19,6 +19,11 @@ from .scalar_type import (
19
  )
20
  from ._ops import ops
21
 
 
 
 
 
 
22
 
23
  __all__ = [
24
  "ScalarType",
@@ -32,7 +37,11 @@ __all__ = [
32
  "gptq_marlin_repack",
33
  "marlin_gemm",
34
  "marlin_qqq_gemm",
 
 
 
35
  "ops",
 
36
  "scalar_types",
37
  "scaled_fp8_quant",
38
  "scaled_int8_quant",
 
19
  )
20
  from ._ops import ops
21
 
22
+ from .utils import marlin_utils
23
+ from .utils import marlin_utils_fp4
24
+ from .utils import marlin_utils_fp8
25
+ from .utils import quant_utils
26
+
27
 
28
  __all__ = [
29
  "ScalarType",
 
37
  "gptq_marlin_repack",
38
  "marlin_gemm",
39
  "marlin_qqq_gemm",
40
+ "marlin_utils",
41
+ "marlin_utils_fp4",
42
+ "marlin_utils_fp8",
43
  "ops",
44
+ "quant_utils",
45
  "scalar_types",
46
  "scaled_fp8_quant",
47
  "scaled_int8_quant",
build/torch27-cxx11-cu118-x86_64-linux/quantization/_ops.py CHANGED
@@ -1,9 +1,9 @@
1
  import torch
2
- from . import _quantization_e8730d8_dirty
3
- ops = torch.ops._quantization_e8730d8_dirty
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
- return f"_quantization_e8730d8_dirty::{op_name}"
 
1
  import torch
2
+ from . import _quantization_dfa7d18
3
+ ops = torch.ops._quantization_dfa7d18
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
+ return f"_quantization_dfa7d18::{op_name}"
build/torch27-cxx11-cu118-x86_64-linux/quantization/_quantization_dfa7d18.abi3.so ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:18dc876a3fd8d78af10311486db850cfa1905b6d5cc308a72f44bc0704bc91e6
3
+ size 155752576
build/torch27-cxx11-cu118-x86_64-linux/quantization/_quantization_e8730d8_dirty.abi3.so DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:dfeeef0e0e812038c52f838b994c631faa236af0d360246951dfc3e07ab0a461
3
- size 155756888
 
 
 
 
build/torch27-cxx11-cu118-x86_64-linux/quantization/compressed_tensors.py CHANGED
@@ -1,8 +1,10 @@
1
- from typing import Optional, Tuple
2
 
3
  import torch
4
 
5
  from ._ops import ops
 
 
6
 
7
  # fp8
8
  def scaled_fp8_quant(
 
1
+ from typing import Optional, Union
2
 
3
  import torch
4
 
5
  from ._ops import ops
6
+ from .platforms import current_platform
7
+
8
 
9
  # fp8
10
  def scaled_fp8_quant(
build/torch27-cxx11-cu118-x86_64-linux/quantization/platforms.py CHANGED
@@ -27,6 +27,29 @@ class DeviceCapability(NamedTuple):
27
  class Platform(ABC):
28
  simple_compile_backend: str = "inductor"
29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
  @classmethod
31
  @abstractmethod
32
  def get_device_name(cls, device_id: int = 0) -> str: ...
@@ -51,6 +74,18 @@ class CudaPlatform(Platform):
51
 
52
 
53
  class RocmPlatform(Platform):
 
 
 
 
 
 
 
 
 
 
 
 
54
  @classmethod
55
  @lru_cache(maxsize=8)
56
  def get_device_capability(cls, device_id: int = 0) -> DeviceCapability:
 
27
  class Platform(ABC):
28
  simple_compile_backend: str = "inductor"
29
 
30
+ @classmethod
31
+ def fp8_dtype(cls) -> torch.dtype:
32
+ """
33
+ Returns the preferred FP8 type on the current platform.
34
+
35
+ See the documentation for is_fp8_fnuz for details.
36
+ """
37
+ return torch.float8_e4m3fn
38
+
39
+ @classmethod
40
+ def is_fp8_fnuz(cls) -> bool:
41
+ """
42
+ Returns whether the preferred FP8 type is FNUZ on the current platform.
43
+
44
+ There are two representations of FP8, OCP FP8 and FNUZ FP8.
45
+ The OCP specification can be found at https://tinyurl.com/b7jvwpft.
46
+ The FNUZ specification can be found at https://tinyurl.com/5n6hwwu5.
47
+
48
+ AMD's MI300 and MI325 have native hardware support for FNUZ. All other
49
+ hardware has converged on the OCP FP8 standard.
50
+ """
51
+ return False
52
+
53
  @classmethod
54
  @abstractmethod
55
  def get_device_name(cls, device_id: int = 0) -> str: ...
 
74
 
75
 
76
  class RocmPlatform(Platform):
77
+ @classmethod
78
+ def fp8_dtype(cls) -> torch.dtype:
79
+ if cls.is_fp8_fnuz():
80
+ return torch.float8_e4m3fnuz
81
+ else:
82
+ return torch.float8_e4m3fn
83
+
84
+ @classmethod
85
+ def is_fp8_fnuz(cls) -> bool:
86
+ # only device 0 is checked, this assumes MI300 platforms are homogeneous
87
+ return "gfx94" in torch.cuda.get_device_properties(0).gcnArchName
88
+
89
  @classmethod
90
  @lru_cache(maxsize=8)
91
  def get_device_capability(cls, device_id: int = 0) -> DeviceCapability:
build/torch27-cxx11-cu126-x86_64-linux/quantization/__init__.py CHANGED
@@ -19,6 +19,11 @@ from .scalar_type import (
19
  )
20
  from ._ops import ops
21
 
 
 
 
 
 
22
 
23
  __all__ = [
24
  "ScalarType",
@@ -32,7 +37,11 @@ __all__ = [
32
  "gptq_marlin_repack",
33
  "marlin_gemm",
34
  "marlin_qqq_gemm",
 
 
 
35
  "ops",
 
36
  "scalar_types",
37
  "scaled_fp8_quant",
38
  "scaled_int8_quant",
 
19
  )
20
  from ._ops import ops
21
 
22
+ from .utils import marlin_utils
23
+ from .utils import marlin_utils_fp4
24
+ from .utils import marlin_utils_fp8
25
+ from .utils import quant_utils
26
+
27
 
28
  __all__ = [
29
  "ScalarType",
 
37
  "gptq_marlin_repack",
38
  "marlin_gemm",
39
  "marlin_qqq_gemm",
40
+ "marlin_utils",
41
+ "marlin_utils_fp4",
42
+ "marlin_utils_fp8",
43
  "ops",
44
+ "quant_utils",
45
  "scalar_types",
46
  "scaled_fp8_quant",
47
  "scaled_int8_quant",
build/torch27-cxx11-cu126-x86_64-linux/quantization/_ops.py CHANGED
@@ -1,9 +1,9 @@
1
  import torch
2
- from . import _quantization_e8730d8_dirty
3
- ops = torch.ops._quantization_e8730d8_dirty
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
- return f"_quantization_e8730d8_dirty::{op_name}"
 
1
  import torch
2
+ from . import _quantization_dfa7d18
3
+ ops = torch.ops._quantization_dfa7d18
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
+ return f"_quantization_dfa7d18::{op_name}"
build/torch27-cxx11-cu126-x86_64-linux/quantization/_quantization_dfa7d18.abi3.so ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4e49acf1fe6df71b16edbf8cafc8ba41dbbda45e569b20b867bd8404a8f34db9
3
+ size 160284752
build/torch27-cxx11-cu126-x86_64-linux/quantization/_quantization_e8730d8_dirty.abi3.so DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:2d6c023d7381396997b58ff6bdaa002db2ab94a0c0eb17d09512a1a9f8e888d2
3
- size 160280720
 
 
 
 
build/torch27-cxx11-cu126-x86_64-linux/quantization/compressed_tensors.py CHANGED
@@ -1,8 +1,10 @@
1
- from typing import Optional, Tuple
2
 
3
  import torch
4
 
5
  from ._ops import ops
 
 
6
 
7
  # fp8
8
  def scaled_fp8_quant(
 
1
+ from typing import Optional, Union
2
 
3
  import torch
4
 
5
  from ._ops import ops
6
+ from .platforms import current_platform
7
+
8
 
9
  # fp8
10
  def scaled_fp8_quant(
build/torch27-cxx11-cu126-x86_64-linux/quantization/platforms.py CHANGED
@@ -27,6 +27,29 @@ class DeviceCapability(NamedTuple):
27
  class Platform(ABC):
28
  simple_compile_backend: str = "inductor"
29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
  @classmethod
31
  @abstractmethod
32
  def get_device_name(cls, device_id: int = 0) -> str: ...
@@ -51,6 +74,18 @@ class CudaPlatform(Platform):
51
 
52
 
53
  class RocmPlatform(Platform):
 
 
 
 
 
 
 
 
 
 
 
 
54
  @classmethod
55
  @lru_cache(maxsize=8)
56
  def get_device_capability(cls, device_id: int = 0) -> DeviceCapability:
 
27
  class Platform(ABC):
28
  simple_compile_backend: str = "inductor"
29
 
30
+ @classmethod
31
+ def fp8_dtype(cls) -> torch.dtype:
32
+ """
33
+ Returns the preferred FP8 type on the current platform.
34
+
35
+ See the documentation for is_fp8_fnuz for details.
36
+ """
37
+ return torch.float8_e4m3fn
38
+
39
+ @classmethod
40
+ def is_fp8_fnuz(cls) -> bool:
41
+ """
42
+ Returns whether the preferred FP8 type is FNUZ on the current platform.
43
+
44
+ There are two representations of FP8, OCP FP8 and FNUZ FP8.
45
+ The OCP specification can be found at https://tinyurl.com/b7jvwpft.
46
+ The FNUZ specification can be found at https://tinyurl.com/5n6hwwu5.
47
+
48
+ AMD's MI300 and MI325 have native hardware support for FNUZ. All other
49
+ hardware has converged on the OCP FP8 standard.
50
+ """
51
+ return False
52
+
53
  @classmethod
54
  @abstractmethod
55
  def get_device_name(cls, device_id: int = 0) -> str: ...
 
74
 
75
 
76
  class RocmPlatform(Platform):
77
+ @classmethod
78
+ def fp8_dtype(cls) -> torch.dtype:
79
+ if cls.is_fp8_fnuz():
80
+ return torch.float8_e4m3fnuz
81
+ else:
82
+ return torch.float8_e4m3fn
83
+
84
+ @classmethod
85
+ def is_fp8_fnuz(cls) -> bool:
86
+ # only device 0 is checked, this assumes MI300 platforms are homogeneous
87
+ return "gfx94" in torch.cuda.get_device_properties(0).gcnArchName
88
+
89
  @classmethod
90
  @lru_cache(maxsize=8)
91
  def get_device_capability(cls, device_id: int = 0) -> DeviceCapability:
build/torch27-cxx11-cu128-x86_64-linux/quantization/__init__.py CHANGED
@@ -19,6 +19,11 @@ from .scalar_type import (
19
  )
20
  from ._ops import ops
21
 
 
 
 
 
 
22
 
23
  __all__ = [
24
  "ScalarType",
@@ -32,7 +37,11 @@ __all__ = [
32
  "gptq_marlin_repack",
33
  "marlin_gemm",
34
  "marlin_qqq_gemm",
 
 
 
35
  "ops",
 
36
  "scalar_types",
37
  "scaled_fp8_quant",
38
  "scaled_int8_quant",
 
19
  )
20
  from ._ops import ops
21
 
22
+ from .utils import marlin_utils
23
+ from .utils import marlin_utils_fp4
24
+ from .utils import marlin_utils_fp8
25
+ from .utils import quant_utils
26
+
27
 
28
  __all__ = [
29
  "ScalarType",
 
37
  "gptq_marlin_repack",
38
  "marlin_gemm",
39
  "marlin_qqq_gemm",
40
+ "marlin_utils",
41
+ "marlin_utils_fp4",
42
+ "marlin_utils_fp8",
43
  "ops",
44
+ "quant_utils",
45
  "scalar_types",
46
  "scaled_fp8_quant",
47
  "scaled_int8_quant",
build/torch27-cxx11-cu128-x86_64-linux/quantization/_ops.py CHANGED
@@ -1,9 +1,9 @@
1
  import torch
2
- from . import _quantization_e8730d8_dirty
3
- ops = torch.ops._quantization_e8730d8_dirty
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
- return f"_quantization_e8730d8_dirty::{op_name}"
 
1
  import torch
2
+ from . import _quantization_dfa7d18
3
+ ops = torch.ops._quantization_dfa7d18
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
+ return f"_quantization_dfa7d18::{op_name}"
build/torch27-cxx11-cu128-x86_64-linux/quantization/_quantization_dfa7d18.abi3.so ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7c5b228ee9c669189c71da56a54be02d116cb733e17139b02344423fb768a4db
3
+ size 297102992
build/torch27-cxx11-cu128-x86_64-linux/quantization/_quantization_e8730d8_dirty.abi3.so DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:718b7895b3e802aee133dcdbdbfd4aafa1dfed30a7a2b08547d97ec738b29c6e
3
- size 297107160
 
 
 
 
build/torch27-cxx11-cu128-x86_64-linux/quantization/compressed_tensors.py CHANGED
@@ -1,8 +1,10 @@
1
- from typing import Optional, Tuple
2
 
3
  import torch
4
 
5
  from ._ops import ops
 
 
6
 
7
  # fp8
8
  def scaled_fp8_quant(
 
1
+ from typing import Optional, Union
2
 
3
  import torch
4
 
5
  from ._ops import ops
6
+ from .platforms import current_platform
7
+
8
 
9
  # fp8
10
  def scaled_fp8_quant(
build/torch27-cxx11-cu128-x86_64-linux/quantization/platforms.py CHANGED
@@ -27,6 +27,29 @@ class DeviceCapability(NamedTuple):
27
  class Platform(ABC):
28
  simple_compile_backend: str = "inductor"
29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
  @classmethod
31
  @abstractmethod
32
  def get_device_name(cls, device_id: int = 0) -> str: ...
@@ -51,6 +74,18 @@ class CudaPlatform(Platform):
51
 
52
 
53
  class RocmPlatform(Platform):
 
 
 
 
 
 
 
 
 
 
 
 
54
  @classmethod
55
  @lru_cache(maxsize=8)
56
  def get_device_capability(cls, device_id: int = 0) -> DeviceCapability:
 
27
  class Platform(ABC):
28
  simple_compile_backend: str = "inductor"
29
 
30
+ @classmethod
31
+ def fp8_dtype(cls) -> torch.dtype:
32
+ """
33
+ Returns the preferred FP8 type on the current platform.
34
+
35
+ See the documentation for is_fp8_fnuz for details.
36
+ """
37
+ return torch.float8_e4m3fn
38
+
39
+ @classmethod
40
+ def is_fp8_fnuz(cls) -> bool:
41
+ """
42
+ Returns whether the preferred FP8 type is FNUZ on the current platform.
43
+
44
+ There are two representations of FP8, OCP FP8 and FNUZ FP8.
45
+ The OCP specification can be found at https://tinyurl.com/b7jvwpft.
46
+ The FNUZ specification can be found at https://tinyurl.com/5n6hwwu5.
47
+
48
+ AMD's MI300 and MI325 have native hardware support for FNUZ. All other
49
+ hardware has converged on the OCP FP8 standard.
50
+ """
51
+ return False
52
+
53
  @classmethod
54
  @abstractmethod
55
  def get_device_name(cls, device_id: int = 0) -> str: ...
 
74
 
75
 
76
  class RocmPlatform(Platform):
77
+ @classmethod
78
+ def fp8_dtype(cls) -> torch.dtype:
79
+ if cls.is_fp8_fnuz():
80
+ return torch.float8_e4m3fnuz
81
+ else:
82
+ return torch.float8_e4m3fn
83
+
84
+ @classmethod
85
+ def is_fp8_fnuz(cls) -> bool:
86
+ # only device 0 is checked, this assumes MI300 platforms are homogeneous
87
+ return "gfx94" in torch.cuda.get_device_properties(0).gcnArchName
88
+
89
  @classmethod
90
  @lru_cache(maxsize=8)
91
  def get_device_capability(cls, device_id: int = 0) -> DeviceCapability: