Fixup platform FP8 data type query
Browse files
torch-ext/quantization/compressed_tensors.py
CHANGED
@@ -1,8 +1,10 @@
|
|
1 |
-
from typing import Optional,
|
2 |
|
3 |
import torch
|
4 |
|
5 |
from ._ops import ops
|
|
|
|
|
6 |
|
7 |
# fp8
|
8 |
def scaled_fp8_quant(
|
|
|
1 |
+
from typing import Optional, Union
|
2 |
|
3 |
import torch
|
4 |
|
5 |
from ._ops import ops
|
6 |
+
from .platforms import current_platform
|
7 |
+
|
8 |
|
9 |
# fp8
|
10 |
def scaled_fp8_quant(
|
torch-ext/quantization/platforms.py
CHANGED
@@ -27,6 +27,29 @@ class DeviceCapability(NamedTuple):
|
|
27 |
class Platform(ABC):
|
28 |
simple_compile_backend: str = "inductor"
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
@classmethod
|
31 |
@abstractmethod
|
32 |
def get_device_name(cls, device_id: int = 0) -> str: ...
|
@@ -51,6 +74,18 @@ class CudaPlatform(Platform):
|
|
51 |
|
52 |
|
53 |
class RocmPlatform(Platform):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
@classmethod
|
55 |
@lru_cache(maxsize=8)
|
56 |
def get_device_capability(cls, device_id: int = 0) -> DeviceCapability:
|
|
|
27 |
class Platform(ABC):
|
28 |
simple_compile_backend: str = "inductor"
|
29 |
|
30 |
+
@classmethod
|
31 |
+
def fp8_dtype(cls) -> torch.dtype:
|
32 |
+
"""
|
33 |
+
Returns the preferred FP8 type on the current platform.
|
34 |
+
|
35 |
+
See the documentation for is_fp8_fnuz for details.
|
36 |
+
"""
|
37 |
+
return torch.float8_e4m3fn
|
38 |
+
|
39 |
+
@classmethod
|
40 |
+
def is_fp8_fnuz(cls) -> bool:
|
41 |
+
"""
|
42 |
+
Returns whether the preferred FP8 type is FNUZ on the current platform.
|
43 |
+
|
44 |
+
There are two representations of FP8, OCP FP8 and FNUZ FP8.
|
45 |
+
The OCP specification can be found at https://tinyurl.com/b7jvwpft.
|
46 |
+
The FNUZ specification can be found at https://tinyurl.com/5n6hwwu5.
|
47 |
+
|
48 |
+
AMD's MI300 and MI325 have native hardware support for FNUZ. All other
|
49 |
+
hardware has converged on the OCP FP8 standard.
|
50 |
+
"""
|
51 |
+
return False
|
52 |
+
|
53 |
@classmethod
|
54 |
@abstractmethod
|
55 |
def get_device_name(cls, device_id: int = 0) -> str: ...
|
|
|
74 |
|
75 |
|
76 |
class RocmPlatform(Platform):
|
77 |
+
@classmethod
|
78 |
+
def fp8_dtype(cls) -> torch.dtype:
|
79 |
+
if cls.is_fp8_fnuz():
|
80 |
+
return torch.float8_e4m3fnuz
|
81 |
+
else:
|
82 |
+
return torch.float8_e4m3fn
|
83 |
+
|
84 |
+
@classmethod
|
85 |
+
def is_fp8_fnuz(cls) -> bool:
|
86 |
+
# only device 0 is checked, this assumes MI300 platforms are homogeneous
|
87 |
+
return "gfx94" in torch.cuda.get_device_properties(0).gcnArchName
|
88 |
+
|
89 |
@classmethod
|
90 |
@lru_cache(maxsize=8)
|
91 |
def get_device_capability(cls, device_id: int = 0) -> DeviceCapability:
|