danieldk HF Staff commited on
Commit
a965094
·
1 Parent(s): a02ac19

Fixup platform FP8 data type query

Browse files
torch-ext/quantization/compressed_tensors.py CHANGED
@@ -1,8 +1,10 @@
1
- from typing import Optional, Tuple
2
 
3
  import torch
4
 
5
  from ._ops import ops
 
 
6
 
7
  # fp8
8
  def scaled_fp8_quant(
 
1
+ from typing import Optional, Union
2
 
3
  import torch
4
 
5
  from ._ops import ops
6
+ from .platforms import current_platform
7
+
8
 
9
  # fp8
10
  def scaled_fp8_quant(
torch-ext/quantization/platforms.py CHANGED
@@ -27,6 +27,29 @@ class DeviceCapability(NamedTuple):
27
  class Platform(ABC):
28
  simple_compile_backend: str = "inductor"
29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
  @classmethod
31
  @abstractmethod
32
  def get_device_name(cls, device_id: int = 0) -> str: ...
@@ -51,6 +74,18 @@ class CudaPlatform(Platform):
51
 
52
 
53
  class RocmPlatform(Platform):
 
 
 
 
 
 
 
 
 
 
 
 
54
  @classmethod
55
  @lru_cache(maxsize=8)
56
  def get_device_capability(cls, device_id: int = 0) -> DeviceCapability:
 
27
  class Platform(ABC):
28
  simple_compile_backend: str = "inductor"
29
 
30
+ @classmethod
31
+ def fp8_dtype(cls) -> torch.dtype:
32
+ """
33
+ Returns the preferred FP8 type on the current platform.
34
+
35
+ See the documentation for is_fp8_fnuz for details.
36
+ """
37
+ return torch.float8_e4m3fn
38
+
39
+ @classmethod
40
+ def is_fp8_fnuz(cls) -> bool:
41
+ """
42
+ Returns whether the preferred FP8 type is FNUZ on the current platform.
43
+
44
+ There are two representations of FP8, OCP FP8 and FNUZ FP8.
45
+ The OCP specification can be found at https://tinyurl.com/b7jvwpft.
46
+ The FNUZ specification can be found at https://tinyurl.com/5n6hwwu5.
47
+
48
+ AMD's MI300 and MI325 have native hardware support for FNUZ. All other
49
+ hardware has converged on the OCP FP8 standard.
50
+ """
51
+ return False
52
+
53
  @classmethod
54
  @abstractmethod
55
  def get_device_name(cls, device_id: int = 0) -> str: ...
 
74
 
75
 
76
  class RocmPlatform(Platform):
77
+ @classmethod
78
+ def fp8_dtype(cls) -> torch.dtype:
79
+ if cls.is_fp8_fnuz():
80
+ return torch.float8_e4m3fnuz
81
+ else:
82
+ return torch.float8_e4m3fn
83
+
84
+ @classmethod
85
+ def is_fp8_fnuz(cls) -> bool:
86
+ # only device 0 is checked, this assumes MI300 platforms are homogeneous
87
+ return "gfx94" in torch.cuda.get_device_properties(0).gcnArchName
88
+
89
  @classmethod
90
  @lru_cache(maxsize=8)
91
  def get_device_capability(cls, device_id: int = 0) -> DeviceCapability: