from typing import Optional, Tuple import torch try: from ._ops import ops except ImportError as e: # Fallback for local development. try: import _quantization ops = torch.ops._quantization except ImportError: raise e # fp8 def scaled_fp8_quant( input: torch.Tensor, scale: Optional[torch.Tensor] = None, num_token_padding: Optional[int] = None, scale_ub: Optional[torch.Tensor] = None, use_per_token_if_dynamic: bool = False, ) -> Tuple[torch.Tensor, torch.Tensor]: """ Quantize input tensor to FP8 and return quantized tensor and scale. This function supports both static and dynamic quantization: If you provide the scale, it will use static scaling and if you omit it, the scale will be determined dynamically. The function also allows optional padding of the output tensors for downstream kernels that will benefit from padding. Args: input: The input tensor to be quantized to FP8 scale: Optional scaling factor for the FP8 quantization scale_ub: Optional upper bound for scaling factor in dynamic per token case num_token_padding: If specified, pad the first dimension of the output to at least this value. use_per_token_if_dynamic: Whether to do per_tensor or per_token in the dynamic quantization case. Returns: Tuple[torch.Tensor, torch.Tensor]: The output tensor in FP8 and scaling factor. """ # This code assumes batch_dim and num_tokens are flattened assert input.ndim == 2 shape: Union[Tuple[int, int], torch.Size] = input.shape # For rocm, the output fp8 dtype is torch.float_e3m3fnuz # out_dtype: torch.dtype = torch.float8_e4m3fnuz \ # if current_platform.is_rocm() else torch.float8_e4m3fn out_dtype = torch.float8_e4m3fn if num_token_padding: shape = (max(num_token_padding, input.shape[0]), shape[1]) output = torch.empty(shape, device=input.device, dtype=out_dtype) if scale is None: if use_per_token_if_dynamic: scale = torch.empty((shape[0], 1), device=input.device, dtype=torch.float32) ops.dynamic_per_token_scaled_fp8_quant(output, input, scale, scale_ub) else: scale = torch.zeros(1, device=input.device, dtype=torch.float32) ops.dynamic_scaled_fp8_quant(output, input, scale) else: # num_token_padding not implemented for this case assert scale.numel() == 1 or num_token_padding is None ops.static_scaled_fp8_quant(output, input, scale) return output, scale # int8 def scaled_int8_quant( input: torch.Tensor, scale: Optional[torch.Tensor] = None, azp: Optional[torch.Tensor] = None, symmetric: bool = True, ) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]: """ Quantize the input tensor to int8 and return the quantized tensor and scale, and maybe azp. Args: input: The input tensor to be quantized to int8. scale: Optional scaling factor for the int8 quantization. When not provided, we invoke dynamic-per-token quantization. azp: Optional zero-point for the int8 quantization. Must be provided for asymmetric quantization if `scale` is provided. symmetric: Whether to use symmetric quantization (scale only, azp ignored). Returns: Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]] : Output int8 tensor, scales, and optionally azp. """ output = torch.empty_like(input, dtype=torch.int8) if scale is not None: # static-per-tensor quantization. assert symmetric == ( azp is None ), "azp must only be provided for asymmetric quantization." ops.static_scaled_int8_quant(output, input, scale, azp) return output, scale, azp # dynamic-per-token quantization. input_scales = torch.empty( (input.numel() // input.shape[-1], 1), device=input.device, dtype=torch.float32 ) input_azp = None if symmetric else torch.empty_like(input_scales, dtype=torch.int32) ops.dynamic_scaled_int8_quant(output, input, input_scales, input_azp) return output, input_scales, input_azp