from typing import List, Optional, Tuple import numpy import torch import quantization as ops from quantization.scalar_type import ScalarType, scalar_types from .quant_utils import pack_cols, unpack_cols GPTQ_MARLIN_TILE = 16 GPTQ_MARLIN_MIN_THREAD_N = 64 GPTQ_MARLIN_MIN_THREAD_K = 128 GPTQ_MARLIN_MAX_PARALLEL = 16 GPTQ_MARLIN_24_TILE = 16 GPTQ_MARLIN_24_MIN_THREAD_N = 128 GPTQ_MARLIN_24_MIN_THREAD_K = 128 GPTQ_MARLIN_24_MAX_PARALLEL = 64 GPTQ_MARLIN_24_SUPPORTED_QUANT_TYPES = [scalar_types.uint4b8, scalar_types.uint8b128] GPTQ_MARLIN_24_SUPPORTED_GROUP_SIZES = [-1, 128] MARLIN_QQQ_TILE = 16 MARLIN_QQQ_MIN_THREAD_N = 64 MARLIN_QQQ_MIN_THREAD_K = 128 MARLIN_QQQ_MAX_PARALLEL = 16 MARLIN_QQQ_SUPPORTED_NUM_BITS = [4] MARLIN_QQQ_SUPPORTED_GROUP_SIZES = [-1, 128] MARLIN_QQQ_SUPPORTED_SYM = [True] MARLIN_SUPPORTED_GROUP_SIZES = [-1, 32, 64, 128] # In case there is a performance issue with Marlin, the variable below can be # changed to False, which allows Marlin to perform global reductions in fp16 # precision (instead of fp32), and therefore, save on some memory movements. USE_FP32_REDUCE_DEFAULT = True # For binary size and compile time, we don't support the same types for with and # without runtime zero-point. We support common cases, i.e. AWQ and GPTQ. # TODO: we may want to move this into the C++ so its closer to the actual impl def query_marlin_supported_quant_types( has_zp: bool, device_capability: Optional[int] = None ): if device_capability is None: capability_tuple = torch.cuda.get_device_capability() device_capability = capability_tuple[0] * 10 + capability_tuple[1] if device_capability < 80: return [] if has_zp: # AWQ style, unsigned + runtime zero-point return [scalar_types.uint4, scalar_types.uint8] else: # GPTQ style, unsigned + symmetric bias # TODO: once fp8_marlin is merged into "gptq_marlin" we should be able # to add `scalar_types.float8_e4m3fn` here return [scalar_types.uint4b8, scalar_types.uint8b128] def _check_marlin_supported( quant_type: ScalarType, group_size: Optional[int], has_zp: bool, device_capability: Optional[int] = None, ) -> Tuple[bool, Optional[str]]: if device_capability is None: capability_tuple = torch.cuda.get_device_capability() device_capability = capability_tuple[0] * 10 + capability_tuple[1] supported_types = query_marlin_supported_quant_types(has_zp, device_capability) if quant_type not in supported_types: return ( False, f"Marlin does not support weight_bits = {quant_type}. " f"Only types = {supported_types} " f"are supported (for group_size = {group_size}, " f"device_capability = {device_capability}, zp = {has_zp}).", ) if group_size is None or group_size not in MARLIN_SUPPORTED_GROUP_SIZES: return ( False, f"Marlin does not support group_size = {group_size}. " f"Only group_sizes = {MARLIN_SUPPORTED_GROUP_SIZES} " "are supported.", ) return True, None def check_marlin_supported( quant_type: ScalarType, group_size: int, has_zp: bool = False, device_capability: Optional[int] = None, ) -> bool: cond, _ = _check_marlin_supported(quant_type, group_size, has_zp, device_capability) return cond def verify_marlin_supported( quant_type: ScalarType, group_size: int, has_zp: bool = False ) -> None: cond, err_msg = _check_marlin_supported(quant_type, group_size, has_zp) if not cond: assert err_msg is not None raise ValueError(err_msg) def verify_marlin_supports_shape( output_size_per_partition: int, input_size_per_partition: int, input_size: int, group_size: int, ) -> None: # Validate output_size_per_partition if output_size_per_partition % GPTQ_MARLIN_MIN_THREAD_N != 0: raise ValueError( f"Weight output_size_per_partition = " f"{output_size_per_partition} is not divisible by " f" min_thread_n = {GPTQ_MARLIN_MIN_THREAD_N}. " "Consider reducing tensor_parallel_size or running " "with --quantization gptq." ) # Validate input_size_per_partition if input_size_per_partition % GPTQ_MARLIN_MIN_THREAD_K != 0: raise ValueError( f"Weight input_size_per_partition = " f"{input_size_per_partition} is not divisible " f"by min_thread_k = {GPTQ_MARLIN_MIN_THREAD_K}. " "Consider reducing tensor_parallel_size or running " "with --quantization gptq." ) if group_size < input_size and input_size_per_partition % group_size != 0: raise ValueError( f"Weight input_size_per_partition = {input_size_per_partition}" f" is not divisible by group_size = {group_size}." "Consider reducing tensor_parallel_size or running " "with --quantization gptq." ) def check_marlin_supports_shape( output_size_per_partition: int, input_size_per_partition: int, input_size: int, group_size: int, ) -> Tuple[bool, Optional[str]]: try: verify_marlin_supports_shape( output_size_per_partition, input_size_per_partition, input_size, group_size ) except ValueError as e: return False, e.__str__() return True, None def marlin_make_workspace( output_size_per_partition: int, device: torch.device ) -> torch.Tensor: max_workspace_size = ( output_size_per_partition // GPTQ_MARLIN_MIN_THREAD_N ) * GPTQ_MARLIN_MAX_PARALLEL return torch.zeros( max_workspace_size, dtype=torch.int, device=device, requires_grad=False ) def marlin_is_k_full(act_order: bool, is_row_parallel: bool) -> bool: return (not act_order) or (act_order and not is_row_parallel) def marlin_repeat_scales_on_all_ranks( act_order: bool, group_size: int, is_row_parallel: bool ) -> bool: # Need to repeat scales on every rank if act_ordering or # channelwise and RowParallelLinear is_channelwise = group_size == -1 return act_order or (is_channelwise and is_row_parallel) def marlin_make_empty_g_idx(device: torch.device) -> torch.Tensor: return torch.nn.Parameter( torch.empty(0, dtype=torch.int, device=device), requires_grad=False ) def marlin_make_empty_zp(device: torch.device) -> torch.Tensor: return torch.nn.Parameter( torch.empty(0, dtype=torch.int, device=device), requires_grad=False ) def marlin_sort_g_idx(g_idx: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: g_idx_sort_indices = torch.argsort(g_idx).to(torch.int) return g_idx[g_idx_sort_indices], g_idx_sort_indices def get_scale_perms(): scale_perm: List[int] = [] for i in range(8): scale_perm.extend([i + 8 * j for j in range(8)]) scale_perm_single: List[int] = [] for i in range(4): scale_perm_single.extend([2 * i + j for j in [0, 1, 8, 9, 16, 17, 24, 25]]) return scale_perm, scale_perm_single def marlin_permute_scales( s: torch.Tensor, size_k: int, size_n: int, group_size: int ) -> torch.Tensor: scale_perm, scale_perm_single = get_scale_perms() if group_size < size_k and group_size != -1: s = s.reshape((-1, len(scale_perm)))[:, scale_perm] else: s = s.reshape((-1, len(scale_perm_single)))[:, scale_perm_single] s = s.reshape((-1, size_n)).contiguous() return s def marlin_moe_permute_scales( s: torch.Tensor, size_k: int, size_n: int, group_size: int, ): num_experts = s.shape[0] output = torch.empty( (num_experts, s.shape[1], s.shape[2]), device=s.device, dtype=s.dtype, ) for e in range(num_experts): output[e] = marlin_permute_scales(s[e], size_k, size_n, group_size) return output def marlin_zero_points( zp: torch.Tensor, size_k: int, size_n: int, num_bits: int ) -> torch.Tensor: # Permute zero-points in a similar way to scales, but do not use the # "single" permutation, since zero-points are applied on every MMA scale_perm, _ = get_scale_perms() zp = zp.reshape((-1, len(scale_perm)))[:, scale_perm] # Interleave column dim (for the dequantize code) and pack it to int32 if num_bits == 4: interleave = numpy.array([0, 2, 4, 6, 1, 3, 5, 7]) elif num_bits == 8: interleave = numpy.array([0, 2, 1, 3]) else: raise Exception("num_bits must be 4 or 8, got {}".format(num_bits)) zp = zp.reshape((-1, len(interleave)))[:, interleave].ravel() zp = zp.reshape((-1, size_n)).contiguous() zp = pack_cols(zp, num_bits, size_k, size_n) return zp def awq_to_marlin_zero_points( q_zp_packed: torch.Tensor, size_k: int, size_n: int, num_bits: int ) -> torch.Tensor: # AWQ zero-points are quantized and packed on the column dim. # In addition, the values are permuted based on dequantizer. # Here we undo both of these, and then apply marlin permutation # and pack it back. q_zp = unpack_cols(q_zp_packed, num_bits, size_k, size_n) # Undo interleaving (use argsort(..) to get inverse perm) if num_bits == 4: undo_interleave = numpy.argsort(numpy.array([0, 2, 4, 6, 1, 3, 5, 7])) elif num_bits == 8: undo_interleave = numpy.argsort(numpy.array([0, 2, 1, 3])) else: raise Exception("num_bits must be 4 or 8, got {}".format(num_bits)) q_zp = q_zp.reshape((-1, len(undo_interleave)))[:, undo_interleave].ravel() q_zp = q_zp.reshape((-1, size_n)).contiguous() marlin_zp = marlin_zero_points(q_zp, size_k, size_n, num_bits) return marlin_zp def moe_awq_to_marlin_zero_points( q_zp_packed: torch.Tensor, size_k: int, size_n: int, num_bits: int ): num_experts = q_zp_packed.shape[0] output = torch.empty( (num_experts, q_zp_packed.shape[1], q_zp_packed.shape[2]), device=q_zp_packed.device, dtype=q_zp_packed.dtype, ) for e in range(num_experts): output[e] = awq_to_marlin_zero_points(q_zp_packed[e], size_k, size_n, num_bits) return output def apply_gptq_marlin_linear( input: torch.Tensor, weight: torch.Tensor, weight_scale: torch.Tensor, weight_zp: torch.Tensor, g_idx: torch.Tensor, g_idx_sort_indices: torch.Tensor, workspace: torch.Tensor, wtype: ScalarType, output_size_per_partition: int, input_size_per_partition: int, is_k_full: bool, bias: Optional[torch.Tensor] = None, use_fp32_reduce: bool = USE_FP32_REDUCE_DEFAULT, ) -> torch.Tensor: reshaped_x = input.reshape(-1, input.shape[-1]) out_shape = input.shape[:-1] + (output_size_per_partition,) output = ops.gptq_marlin_gemm( reshaped_x, weight, weight_scale, weight_zp, g_idx, g_idx_sort_indices, workspace, wtype, size_m=reshaped_x.shape[0], size_n=output_size_per_partition, size_k=input_size_per_partition, is_k_full=is_k_full, has_zp=False, use_fp32_reduce=use_fp32_reduce, is_zp_float=False, ) if bias is not None: output.add_(bias) # In-place add return output.reshape(out_shape) def apply_awq_marlin_linear( input: torch.Tensor, weight: torch.Tensor, weight_scale: torch.Tensor, weight_zp: torch.Tensor, g_idx: torch.Tensor, g_idx_sort_indices: torch.Tensor, workspace: torch.Tensor, quant_type: ScalarType, output_size_per_partition: int, input_size_per_partition: int, bias: Optional[torch.Tensor] = None, use_fp32_reduce: bool = USE_FP32_REDUCE_DEFAULT, ) -> torch.Tensor: reshaped_x = input.reshape(-1, input.shape[-1]) out_shape = input.shape[:-1] + (output_size_per_partition,) output = ops.gptq_marlin_gemm( reshaped_x, weight, weight_scale, weight_zp, g_idx, g_idx_sort_indices, workspace, quant_type, size_m=reshaped_x.shape[0], size_n=output_size_per_partition, size_k=input_size_per_partition, is_k_full=True, has_zp=True, use_fp32_reduce=use_fp32_reduce, is_zp_float=False, ) if bias is not None: output.add_(bias) # In-place add return output.reshape(out_shape)