#include #include "cuda_utils.h" #include "cutlass_extensions/common.hpp" template void dispatch_scaled_mm(torch::Tensor& c, torch::Tensor const& a, torch::Tensor const& b, torch::Tensor const& a_scales, torch::Tensor const& b_scales, std::optional const& bias, Fp8Func fp8_func, Int8Func int8_func, BlockwiseFunc blockwise_func) { TORCH_CHECK(a_scales.dtype() == torch::kFloat32); TORCH_CHECK(b_scales.dtype() == torch::kFloat32); int M = a.size(0), N = b.size(1), K = a.size(1); if ((a_scales.numel() == 1 || a_scales.numel() == a.size(0)) && (b_scales.numel() == 1 || b_scales.numel() == b.size(1))) { // Standard per-tensor/per-token/per-channel scaling TORCH_CHECK(a_scales.is_contiguous() && b_scales.is_contiguous()); if (a.dtype() == torch::kFloat8_e4m3fn) { fp8_func(c, a, b, a_scales, b_scales, bias); } else { TORCH_CHECK(a.dtype() == torch::kInt8); if constexpr (!std::is_same_v) { int8_func(c, a, b, a_scales, b_scales, bias); } else { TORCH_CHECK(false, "Int8 not supported for this architecture"); } } } else { TORCH_CHECK(a_scales.dim() == 2, "a scale must be 2d tensor."); TORCH_CHECK(b_scales.dim() == 2, "b scale must be 2d tensor."); int32_t version_num = get_sm_version_num(); if (version_num >= 100) { TORCH_CHECK( a.size(0) == a_scales.size(0) && cuda_utils::ceil_div(a.size(1), int64_t(128)) == a_scales.size(1), "a_scale_group_shape must be [1, 128]."); TORCH_CHECK( cuda_utils::ceil_div(b.size(0), int64_t(128)) == b_scales.size(0) && cuda_utils::ceil_div(b.size(1), int64_t(128)) == b_scales.size(1), "b_scale_group_shape must be [128, 128]."); } else { // TODO: Remove this after using cutlass sm90 blockwise scaling gemm // kernel, or introducing ceil_div to the load_init() of mainloop. using GroupShape = std::array; auto make_group_shape = [](torch::Tensor const& x, torch::Tensor const& s) -> GroupShape { TORCH_CHECK(s.dim() == 2, "cutlass_scaled_mm group scales must be 2D"); return {cuda_utils::ceil_div(x.size(0), s.size(0)), cuda_utils::ceil_div(x.size(1), s.size(1))}; }; GroupShape a_scale_group_shape = make_group_shape(a, a_scales); GroupShape b_scale_group_shape = make_group_shape(b, b_scales); // 1x128 per-token group scales for activations // 128x128 blockwise scales for weights TORCH_CHECK((a_scale_group_shape == GroupShape{1, 128} && b_scale_group_shape == GroupShape{128, 128} && a.dtype() == torch::kFloat8_e4m3fn && b.dtype() == torch::kFloat8_e4m3fn), "cutlass_scaled_mm only supports datatype float8_e4m3fn.\n" "a_scale_group_shape must be [1, 128]. Got: [", a_scale_group_shape[0], ", ", a_scale_group_shape[1], "]\n" "b_scale_group_shape must be [128, 128]. Got: [", b_scale_group_shape[0], ", ", b_scale_group_shape[1], "]"); } TORCH_CHECK(!bias, "Bias not yet supported blockwise scaled_mm"); blockwise_func(c, a, b, a_scales, b_scales); } }