|
|
|
import torch |
|
import torch.nn as nn |
|
from torchvision import models |
|
from transformers import AutoTokenizer, AutoModel |
|
|
|
class Net(nn.Module): |
|
def __init__(self): |
|
super(Net, self).__init__() |
|
self.image_encoder = models.resnet18() |
|
self.image_encoder.fc = nn.Identity() |
|
|
|
self.image_out = nn.Sequential( |
|
nn.Linear(512, 256), nn.ReLU(), nn.Linear(256, 256) |
|
) |
|
|
|
self.text_encoder = AutoModel.from_pretrained("dbmdz/distilbert-base-turkish-cased") |
|
self.target_token_idx = 0 |
|
|
|
|
|
self.text_out = nn.Sequential( |
|
nn.Linear(768, 256), nn.ReLU(), nn.Linear(256, 256) |
|
) |
|
|
|
|
|
def forward(self, image, text, mask): |
|
|
|
image_vec = self.image_encoder(image) |
|
|
|
image_vec = self.image_out(image_vec.view(-1,512)) |
|
|
|
text_out = self.text_encoder(text, mask) |
|
last_hidden_states = text_out.last_hidden_state |
|
|
|
last_hidden_states = last_hidden_states[:,self.target_token_idx,:] |
|
|
|
text_vec = self.text_out(last_hidden_states.view(-1,768)) |
|
|
|
return image_vec, text_vec |
|
|