--- language: - tr --- To build the model I used Resnet18 for image part and Turkish-DistillBert for text part. Turkish-DistillBert: [dbmdz/distilbert-base-turkish-cased] You can get more information (and code 🎉) on how to train or use the model on my [github]. [dbmdz/distilbert-base-turkish-cased]: https://huggingface.co/dbmdz/distilbert-base-turkish-cased [github]: https://github.com/kesimeg/turkish-clip # How to use the model? In order to use the model use can use the class in model.py like the example below: ```Python from model import Net import torch import torchvision import torch.nn as nn from torchvision import transforms import torch.nn.functional as F from PIL import Image from transformers import AutoTokenizer, AutoModel model = Net() # If you use model on cpu you need the map_location part model.load_state_dict(torch.load("clip_model.pt", map_location=torch.device('cpu'))) model.eval() tokenizer = AutoTokenizer.from_pretrained("dbmdz/distilbert-base-turkish-cased") transform=transforms.Compose( [ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ], ) def predict(img,text_vec): input = transform(img).unsqueeze(0) token_list = tokenizer(text_vec,padding = True) text = torch.Tensor(token_list["input_ids"]).long() mask = torch.Tensor(token_list["attention_mask"]).long() image_vec, text_vec = model(input, text , mask) print(F.softmax(torch.matmul(image_vec,text_vec.T),dim=1)) img = Image.open("dog.png") # A dog image text_vec = ["Çimenler içinde bir köpek.","Bir köpek.","Çimenler içinde bir kuş."] # Descriptions predict(img,text_vec) # Probabilities for each description ```