Keras
legal
File size: 1,354 Bytes
5d58b52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import os.path as osp
import numpy as np
import random
import torch
import argparse
import pdb
import json

'''
把数据合并
同时抽取一部分需要的数据出来
'''

this_dir = osp.dirname(__file__)

data_root = osp.abspath(osp.join(this_dir, '..', '..', 'data', ''))

data_path = "huawei"
data_path = osp.join(data_root, data_path)


with open(osp.join(data_path, 'product_corpus.json'), "r") as f:
    data_doc = json.load(f)

with open(osp.join(data_path, '831_alarm_serialize.json'), "r") as f:
    data_alarm = json.load(f)
# kpi_info.json
with open(osp.join(data_path, '917_kpi_serialize_50_mn.json'), "r") as f:
    data_kpi = json.load(f)


# 实体的序列化
with open(osp.join(data_path, '5GC_KB/database_entity_serialize.json'), "r") as f:
    data_entity = json.load(f)

random.shuffle(data_kpi)
random.shuffle(data_doc)
random.shuffle(data_alarm)
random.shuffle(data_entity)
data = data_alarm + data_kpi + data_entity + data_doc
random.shuffle(data)

# 241527
pdb.set_trace()
with open(osp.join(data_path, 'Seq_data_large.json'), "w") as fp:
    json.dump(data, fp, ensure_ascii=False)


# 三元组
with open(osp.join(data_path, '5GC_KB/database_triples.json'), "r") as f:
    data = json.load(f)
random.shuffle(data)


with open(osp.join(data_path, 'KG_data_base.json'), "w") as fp:
    json.dump(data, fp, ensure_ascii=False)