Keras
legal
File size: 16,927 Bytes
5d58b52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
import os.path as osp
import numpy as np
import random
import torch
from easydict import EasyDict as edict
import argparse
import pdb
import json
from model import BertTokenizer
from collections import Counter
from ltp import LTP
from tqdm import tqdm
from src.utils import add_special_token
from functools import reduce
from time import time
from numpy import mean
import math

from src.utils import Loss_log, time_trans
from collections import defaultdict


class cfg():
    def __init__(self):
        self.this_dir = osp.dirname(__file__)
        # change
        self.data_root = osp.abspath(osp.join(self.this_dir, '..', '..', 'data', ''))

    def get_args(self):
        parser = argparse.ArgumentParser()
        # seq_data_name = "Seq_data_tiny_831"
        parser.add_argument("--data_path", default="huawei", type=str, help="Experiment path")
        # TODO: freq 可以考虑 150
        parser.add_argument("--freq", default=50, type=int, help="出现多少次的词认为是重要的")
        parser.add_argument("--batch_size", default=100, type=int, help="分词的batch size")
        parser.add_argument("--seq_data_name", default='Seq_data_large', type=str, help="seq_data 名字")
        parser.add_argument("--deal_numeric", default=0, type=int, help="是否处理数值数据")

        parser.add_argument("--read_cws", default=0, type=int, help="是否需要读训练好的cws文件")
        self.cfg = parser.parse_args()

    def update_train_configs(self):
        # TODO: update some dynamic variable
        self.cfg.data_root = self.data_root
        self.cfg.data_path = osp.join(self.data_root, self.cfg.data_path)

        return self.cfg


def refresh_data(ref, freq, special_token):
    '''
    功能:在自定义的special token基础上基于最小出现频率得到更多新词分词系统的参考,作为wwm基础
    输入:
        freq: 在(37万)语义词典中的最小出现频率(空格为分词)
        special_token: 前面手工定义的特殊token(可能存在交集)
    输出:
        add_words:在定义的最小出现频率基础上筛选出来的新词
    '''
    # 经常出现的sub token
    seq_sub_data = [line.split() for line in ref]
    all_data = []
    for data in seq_sub_data:
        all_data.extend(data)
    sub_word_times = dict(Counter(all_data))
    asub_word_time_order = sorted(sub_word_times.items(), key=lambda x: x[1], reverse=True)
    # ('LST', 1218), ('RMV', 851), ('DSP', 821), ('ADD', 820), ('MOD', 590), ('SET', 406), ('AWS', 122)
    # ADD、ACT、ALM-XXX、DEL、DSP、LST
    add_words = []

    for i in asub_word_time_order:
        # 把出现频率很高的词加进来
        if i[1] >= freq and len(i[0]) > 1 and len(i[0]) < 20 and not str.isdigit(i[0]):
            add_words.append(i[0])
    add_words.extend(special_token)
    # 卡100阈值时是935个特殊token
    print(f"[{len(add_words)}] special words will be added with frequency [{freq}]!")
    return add_words


def cws(seq_data, add_words, batch_size):
    '''
    功能:所有序列数据的输入转换成分词之后的结果 
    输入:
        seq_data:所有序列数据输入 e.g.['KPI异常下降', 'KPI异常上升']  
        add_words:添加的special words
        batch_size:每次分多少句
    输出:
        all_segment:所有序列数据的输出 e.g. [['KPI', '异常', '下降'], ['KPI', '异常', '上升']] 
        data_size:输入/输出的序列数量(e.g. 2)
    '''
    # seq_data = seq_data.cuda()
    print(f"loading...")
    ltp = LTP("LTP/base2")  # 默认加载 base2 模型
    # ltp = LTP()
    print(f"begin adding words ...")
    # ltp.add_words(words=add_words, max_window=5) #4.1.5
    ltp.add_words(words=add_words)  # 4.2.8
    ltp.to("cuda")
    # for word in add_words:
    #     ltp.add_word(word)
    print(f"{len(add_words)} special words are added!")

    #
    # for data in seq_data:
    #     output = ltp.pipeline([data], tasks=["cws"])
    data_size = len(seq_data)
    seq_data_cws = []
    size = int(data_size / batch_size) + 1
    b = 0
    e = b + batch_size
    # pdb.set_trace()

    log = Loss_log()

    with tqdm(total=size) as _tqdm:
        # pdb.set_trace()
        # log.time_init()
        # pdb.set_trace()
        error_data = []
        for i in range(size):

            output = []
            try:
                _output = ltp.pipeline(seq_data[b:e], tasks=["cws"])
                for data in _output.cws:
                    try:
                        data_out = ltp.pipeline(data, tasks=["cws"])
                        # data_out_ = reduce(lambda x, y: x.extend(y) or x, data_out.cws)
                        data_out_ = []
                        for i in data_out.cws:
                            data_out_.extend([k.strip() for k in i])
                        output.append(data_out_)
                    except:
                        print(f"二阶段分词出错!范围是:[{b}]-[{e}]")
                        error_data.append(data)

            # pdb.set_trace()
            except:
                print(f"第一阶段分词出错!范围是:[{b}]-[{e}]")
                error_data.append(f"第一阶段分词出错!范围是:[{b}]-[{e}]")
                # continue
            seq_data_cws.extend(output)
            b = e
            e += batch_size

            # 时间统计
            if e >= data_size:
                if b >= data_size:
                    break
                e = data_size
            _tqdm.set_description(f'from {b} to {e}:')
            _tqdm.update(1)

    print(f"过滤了{data_size - len(seq_data_cws)}个句子")

    return seq_data_cws, data_size, error_data


def ltp_debug(ltp, op):
    output = []
    for data in op:
        data_out = ltp.pipeline(data, tasks=["cws"])
        # data_out_ = reduce(lambda x, y: x.extend(y) or x, data_out.cws)
        data_out_ = []
        for i in data_out.cws:
            # 保留空格的话需要手动去除空格
            data_out_.append(i[0].strip())
            # 之前没有空格
            # data_out_.extend(i)
        output.append(data_out_)
    return output


def deal_sub_words(subwords, special_token):
    '''
    功能:把每个word的整体内,非首字符的部分加上 '##' 前缀, special_token 不应该被mask
    '''
    for i in range(len(subwords)):
        if i == 0:
            continue
        if subwords[i] in special_token:
            continue
        if subwords[i].startswith("##"):
            continue

        subwords[i] = "##" + subwords[i]
    return subwords


def generate_chinese_ref(seq_data_cws, special_token, deal_numeric, kpi_dic):
    '''
    输入: 
        seq_data_cws:所有序列数据的输出 e.g. [['KPI', '异常', '下降'], ['KPI', '异常', '上升']] 
        special_token:不应该被mask ['[SEP]', '[MASK]', '[ALM]', '[KPI]', '[CLS]', '[LOC]', '[EOS]', '[ENT]', '[ATTR]', '[NUM]', '|']
        data_size:数据量 e.g. 2
    输出:
        ww_return (whole word return):打标之后的chinese ref e.g. [['KPI', '异','##常', '下', '##降'], ['KPI', '异', '##常', '上', '##升']] 
    '''
    # 定义全局set和逆字典统计哪些KPI最后没有被涉及
    data_size = len(seq_data_cws)
    kpi_static_set = set()
    rev_kpi_dic = dict(zip(kpi_dic.values(), kpi_dic.keys()))
    max_len = 0
    sten_that_over_maxl = []
    with tqdm(total=data_size) as _tqdm:
        ww_return = []
        ww_list = []
        kpi_info = []
        not_in_KPI = defaultdict(int)
        for i in range(data_size):
            _tqdm.set_description(f'checking...[{i}/{data_size}] max len: [{max_len}]')
            orig = tokenizer.tokenize(" ".join(seq_data_cws[i]))

            if deal_numeric:
                # 得到元组信息,前两位是KPI下标范围
                _kpi_info, kpi_type_list = extract_kpi(orig, kpi_dic, not_in_KPI)
                kpi_info.append(_kpi_info)
                kpi_static_set.update(kpi_type_list)

            sub_total = []
            ww_seq_tmp = []
            ww_tmp = []
            for sub_data in seq_data_cws[i]:
                sub = tokenizer.tokenize(sub_data)
                sub_total.extend(sub)
                # 在whole word 里面添加#号
                # 输入:  ['异', '常']
                ref_token = deal_sub_words(sub, special_token)
                # 输出:  ['异', '##常']
                ww_seq_tmp.extend(ref_token)
                ww_tmp.append(ref_token)

            if sub_total != orig:
                print("error in match... ")
                if len(orig) > 512:
                    print("the lenth is over the max lenth")
                pdb.set_trace()

            # 变成[[...],[...],[...], ...]
            # ww_return.append(ww_tmp)
            sz_ww_seq = len(ww_seq_tmp)
            # 求最大长度
            max_len = sz_ww_seq if sz_ww_seq > max_len else max_len
            if sz_ww_seq > 500:
                sten_that_over_maxl.append((ww_seq_tmp, sz_ww_seq))

            assert len(sub_total) == sz_ww_seq
            ww_return.append(ww_seq_tmp)
            ww_list.append(ww_tmp)
            # pdb.set_trace()
            _tqdm.update(1)
    # pdb.set_trace()
    if deal_numeric:
        in_kpi = []
        # pdb.set_trace()
        for key in rev_kpi_dic.keys():
            if key in kpi_static_set:
                in_kpi.append(rev_kpi_dic[key])
        if len(in_kpi) < len(rev_kpi_dic):
            print(f"[{len(in_kpi)}] KPI are covered by data: {in_kpi}")
            print(f" [{len(not_in_KPI)}] KPI无法匹配{not_in_KPI}")
        else:
            print("all KPI are covered!")
    return ww_return, kpi_info, sten_that_over_maxl


def extract_num(seq_data_cws):
    '''
        功能:把序列中的数值信息提取出来
        同时过滤 nan 数值
    '''
    num_ref = []
    seq_data_cws_new = []
    for j in range(len(seq_data_cws)):
        num_index = [i for i, x in enumerate(seq_data_cws[j]) if x == '[NUM]']
        # kpi_score = [float(seq_data_cws[i][index+1]) for index in num_index]
        kpi_score = []
        flag = 1
        for index in num_index:
            # if math.isnan(tmp):
            #     pdb.set_trace()
            try:
                tmp = float(seq_data_cws[j][index + 1])
            except:
                # pdb.set_trace()
                flag = 0
                continue
            if math.isnan(tmp):
                flag = 0
            else:
                kpi_score.append(tmp)

        if len(num_index) > 0:
            for index in reversed(num_index):
                seq_data_cws[j].pop(index + 1)
        if flag == 1:
            num_ref.append(kpi_score)
            seq_data_cws_new.append(seq_data_cws[j])
    return seq_data_cws_new, num_ref


def extract_kpi(token_data, kpi_dic, not_in_KPI):
    '''
        功能:把序列中的[KPI]下标范围,[NUM]下标提取出来
        输出格式: [(1,2,4),(5,6,7)]
    '''
    kpi_and_num_info = []
    kpi_type = []
    kpi_index = [i for i, x in enumerate(token_data) if x.lower() == '[kpi]']
    num_index = [i for i, x in enumerate(token_data) if x.lower() == '[num]']
    sz = len(kpi_index)
    assert sz == len(num_index)
    for i in range(sz):
        # (kpi 开始,kpi 结束,NUM token位置)
        # DONE: 添加KPI的类别
        kpi_name = ''.join(token_data[kpi_index[i] + 1: num_index[i] - 1])
        kpi_name_clear = kpi_name.replace('##', '')

        if kpi_name in kpi_dic:
            kpi_id = int(kpi_dic[kpi_name])
        elif kpi_name_clear in kpi_dic:
            kpi_id = int(kpi_dic[kpi_name_clear])
        elif kpi_name_clear in not_in_KPI:
            kpi_id = -1
            not_in_KPI[kpi_name_clear] += 1
        else:
            # 只打印一次
            not_in_KPI[kpi_name_clear] += 1
            kpi_id = -1
            # print(f"{kpi_name_clear} not in KPI dict")

        kpi_info = [kpi_index[i] + 1, num_index[i] - 2, num_index[i], kpi_id]
        kpi_and_num_info.append(kpi_info)
        kpi_type.append(kpi_id)
    # pdb.set_trace()

    return kpi_and_num_info, kpi_type


def kpi_combine(kpi_info, num_ref):
    sz = len(kpi_info)
    assert sz == len(num_ref)
    for i in range(sz):
        for j in range(len(kpi_info[i])):
            kpi_info[i][j].append(num_ref[i][j])
            # pdb.set_trace()
    return kpi_info

# 所有字母小写


def kpi_lower_update(kpi_dic):
    new_dic = {}
    for key in kpi_dic:
        kk = key.lower().split()
        kk = ''.join(kk).strip()
        new_dic[kk] = kpi_dic[key]
    return new_dic


if __name__ == '__main__':
    '''
    功能: 得到 chinese ref 文件,同时刷新训练/测试文件(仅针对序列的文本数据)
    '''
    cfg = cfg()
    cfg.get_args()
    cfgs = cfg.update_train_configs()

    # 路径指定
    domain_file_path = osp.join(cfgs.data_path, 'special_vocab.txt')
    with open(domain_file_path, encoding="utf-8") as f:
        ref = [line for line in f.read().splitlines() if (len(line) > 0 and not line.isspace())]
    tokenizer = BertTokenizer.from_pretrained(osp.join(cfgs.data_root, 'transformer', 'MacBert'), do_lower_case=True)
    seq_data_name = cfgs.seq_data_name
    with open(osp.join(cfgs.data_path, f'{seq_data_name}.json'), "r") as fp:
        seq_data = json.load(fp)
    kpi_dic_name = 'kpi2id'
    with open(osp.join(cfgs.data_path, f'{kpi_dic_name}.json'), "r") as fp:
        kpi_dic = json.load(fp)
    kpi_dic = kpi_lower_update(kpi_dic)
    # 供测试
    random.shuffle(seq_data)
    # seq_data = seq_data[:500]
    print(f"tokenizer size before: {len(tokenizer)}")
    tokenizer, special_token, norm_token = add_special_token(tokenizer)
    special_token = special_token + norm_token

    print(f"tokenizer size after: {len(tokenizer)}")
    print('------------------------ refresh data --------------------------------')
    add_words = refresh_data(ref, cfgs.freq, special_token)

    if not cfgs.read_cws:
        print('------------------------ cws ----------------------------------')
        seq_data_cws, data_size, error_data = cws(seq_data, add_words, cfgs.batch_size)
        print(f'batch size is {cfgs.batch_size}')
        if len(error_data) > 0:
            with open(osp.join(cfgs.data_path, f'{seq_data_name}_error.json'), "w") as fp:
                json.dump(error_data, fp, ensure_ascii=False)
        save_path_cws_orig = osp.join(cfgs.data_path, f'{seq_data_name}_cws_orig.json')
        print("get the new training data! saving...")
        with open(save_path_cws_orig, 'w', ) as fp:
            json.dump(seq_data_cws, fp, ensure_ascii=False)
    else:
        print('------------------------ read ----------------------------------')
        save_path_cws = osp.join(cfgs.data_path, f'{seq_data_name}_cws_orig.json')
        print("get the new training data!")
        with open(save_path_cws, 'r', ) as fp:
            seq_data_cws = json.load(fp)
        data_size = len(seq_data_cws)

    sz_orig = len(seq_data_cws)
    if cfgs.deal_numeric:
        seq_data_cws, num_ref = extract_num(seq_data_cws)
    print(f"过滤了{sz_orig - len(seq_data_cws)}个无效句子")
    data_size = len(seq_data_cws)

    print('---------------------- generate chinese ref ------------------------------')
    chinese_ref, kpi_info, sten_that_over_maxl = generate_chinese_ref(seq_data_cws, special_token, cfgs.deal_numeric, kpi_dic)

    if len(sten_that_over_maxl) > 0:
        print(f"{len(sten_that_over_maxl)} over the 500 len!")
        save_path_max = osp.join(cfgs.data_path, f'{seq_data_name}_max_len_500.json')
        with open(save_path_max, 'w') as fp:
            json.dump(sten_that_over_maxl, fp, ensure_ascii=False)

    if cfgs.deal_numeric:
        print("KPI info combine")
        kpi_ref = kpi_combine(kpi_info, num_ref)
        # pdb.set_trace()
    print('------------------------- match finished ------------------------------')

    # 输出最后训练的时候用于做wwm的分词
    save_path_ref = osp.join(cfgs.data_path, f'{seq_data_name}_chinese_ref.json')
    with open(save_path_ref, 'w') as fp:
        json.dump(chinese_ref, fp, ensure_ascii=False)
    print(f"save chinese_ref done!")

    seq_data_cws_output = []
    for i in range(data_size):
        seq = " ".join(seq_data_cws[i])
        seq_data_cws_output.append(seq)

    save_path_cws = osp.join(cfgs.data_path, f'{seq_data_name}_cws.json')
    print("get the new training data!")
    with open(save_path_cws, 'w', ) as fp:
        json.dump(seq_data_cws_output, fp, ensure_ascii=False)

    print("save seq_data_cws done!")

    if cfgs.deal_numeric:
        kpi_ref_path = osp.join(cfgs.data_path, f'{seq_data_name}_kpi_ref.json')
        with open(kpi_ref_path, 'w', ) as fp:
            json.dump(kpi_ref, fp, ensure_ascii=False)
        print("save num and kpi done!")