File size: 16,927 Bytes
5d58b52 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 |
import os.path as osp
import numpy as np
import random
import torch
from easydict import EasyDict as edict
import argparse
import pdb
import json
from model import BertTokenizer
from collections import Counter
from ltp import LTP
from tqdm import tqdm
from src.utils import add_special_token
from functools import reduce
from time import time
from numpy import mean
import math
from src.utils import Loss_log, time_trans
from collections import defaultdict
class cfg():
def __init__(self):
self.this_dir = osp.dirname(__file__)
# change
self.data_root = osp.abspath(osp.join(self.this_dir, '..', '..', 'data', ''))
def get_args(self):
parser = argparse.ArgumentParser()
# seq_data_name = "Seq_data_tiny_831"
parser.add_argument("--data_path", default="huawei", type=str, help="Experiment path")
# TODO: freq 可以考虑 150
parser.add_argument("--freq", default=50, type=int, help="出现多少次的词认为是重要的")
parser.add_argument("--batch_size", default=100, type=int, help="分词的batch size")
parser.add_argument("--seq_data_name", default='Seq_data_large', type=str, help="seq_data 名字")
parser.add_argument("--deal_numeric", default=0, type=int, help="是否处理数值数据")
parser.add_argument("--read_cws", default=0, type=int, help="是否需要读训练好的cws文件")
self.cfg = parser.parse_args()
def update_train_configs(self):
# TODO: update some dynamic variable
self.cfg.data_root = self.data_root
self.cfg.data_path = osp.join(self.data_root, self.cfg.data_path)
return self.cfg
def refresh_data(ref, freq, special_token):
'''
功能:在自定义的special token基础上基于最小出现频率得到更多新词分词系统的参考,作为wwm基础
输入:
freq: 在(37万)语义词典中的最小出现频率(空格为分词)
special_token: 前面手工定义的特殊token(可能存在交集)
输出:
add_words:在定义的最小出现频率基础上筛选出来的新词
'''
# 经常出现的sub token
seq_sub_data = [line.split() for line in ref]
all_data = []
for data in seq_sub_data:
all_data.extend(data)
sub_word_times = dict(Counter(all_data))
asub_word_time_order = sorted(sub_word_times.items(), key=lambda x: x[1], reverse=True)
# ('LST', 1218), ('RMV', 851), ('DSP', 821), ('ADD', 820), ('MOD', 590), ('SET', 406), ('AWS', 122)
# ADD、ACT、ALM-XXX、DEL、DSP、LST
add_words = []
for i in asub_word_time_order:
# 把出现频率很高的词加进来
if i[1] >= freq and len(i[0]) > 1 and len(i[0]) < 20 and not str.isdigit(i[0]):
add_words.append(i[0])
add_words.extend(special_token)
# 卡100阈值时是935个特殊token
print(f"[{len(add_words)}] special words will be added with frequency [{freq}]!")
return add_words
def cws(seq_data, add_words, batch_size):
'''
功能:所有序列数据的输入转换成分词之后的结果
输入:
seq_data:所有序列数据输入 e.g.['KPI异常下降', 'KPI异常上升']
add_words:添加的special words
batch_size:每次分多少句
输出:
all_segment:所有序列数据的输出 e.g. [['KPI', '异常', '下降'], ['KPI', '异常', '上升']]
data_size:输入/输出的序列数量(e.g. 2)
'''
# seq_data = seq_data.cuda()
print(f"loading...")
ltp = LTP("LTP/base2") # 默认加载 base2 模型
# ltp = LTP()
print(f"begin adding words ...")
# ltp.add_words(words=add_words, max_window=5) #4.1.5
ltp.add_words(words=add_words) # 4.2.8
ltp.to("cuda")
# for word in add_words:
# ltp.add_word(word)
print(f"{len(add_words)} special words are added!")
#
# for data in seq_data:
# output = ltp.pipeline([data], tasks=["cws"])
data_size = len(seq_data)
seq_data_cws = []
size = int(data_size / batch_size) + 1
b = 0
e = b + batch_size
# pdb.set_trace()
log = Loss_log()
with tqdm(total=size) as _tqdm:
# pdb.set_trace()
# log.time_init()
# pdb.set_trace()
error_data = []
for i in range(size):
output = []
try:
_output = ltp.pipeline(seq_data[b:e], tasks=["cws"])
for data in _output.cws:
try:
data_out = ltp.pipeline(data, tasks=["cws"])
# data_out_ = reduce(lambda x, y: x.extend(y) or x, data_out.cws)
data_out_ = []
for i in data_out.cws:
data_out_.extend([k.strip() for k in i])
output.append(data_out_)
except:
print(f"二阶段分词出错!范围是:[{b}]-[{e}]")
error_data.append(data)
# pdb.set_trace()
except:
print(f"第一阶段分词出错!范围是:[{b}]-[{e}]")
error_data.append(f"第一阶段分词出错!范围是:[{b}]-[{e}]")
# continue
seq_data_cws.extend(output)
b = e
e += batch_size
# 时间统计
if e >= data_size:
if b >= data_size:
break
e = data_size
_tqdm.set_description(f'from {b} to {e}:')
_tqdm.update(1)
print(f"过滤了{data_size - len(seq_data_cws)}个句子")
return seq_data_cws, data_size, error_data
def ltp_debug(ltp, op):
output = []
for data in op:
data_out = ltp.pipeline(data, tasks=["cws"])
# data_out_ = reduce(lambda x, y: x.extend(y) or x, data_out.cws)
data_out_ = []
for i in data_out.cws:
# 保留空格的话需要手动去除空格
data_out_.append(i[0].strip())
# 之前没有空格
# data_out_.extend(i)
output.append(data_out_)
return output
def deal_sub_words(subwords, special_token):
'''
功能:把每个word的整体内,非首字符的部分加上 '##' 前缀, special_token 不应该被mask
'''
for i in range(len(subwords)):
if i == 0:
continue
if subwords[i] in special_token:
continue
if subwords[i].startswith("##"):
continue
subwords[i] = "##" + subwords[i]
return subwords
def generate_chinese_ref(seq_data_cws, special_token, deal_numeric, kpi_dic):
'''
输入:
seq_data_cws:所有序列数据的输出 e.g. [['KPI', '异常', '下降'], ['KPI', '异常', '上升']]
special_token:不应该被mask ['[SEP]', '[MASK]', '[ALM]', '[KPI]', '[CLS]', '[LOC]', '[EOS]', '[ENT]', '[ATTR]', '[NUM]', '|']
data_size:数据量 e.g. 2
输出:
ww_return (whole word return):打标之后的chinese ref e.g. [['KPI', '异','##常', '下', '##降'], ['KPI', '异', '##常', '上', '##升']]
'''
# 定义全局set和逆字典统计哪些KPI最后没有被涉及
data_size = len(seq_data_cws)
kpi_static_set = set()
rev_kpi_dic = dict(zip(kpi_dic.values(), kpi_dic.keys()))
max_len = 0
sten_that_over_maxl = []
with tqdm(total=data_size) as _tqdm:
ww_return = []
ww_list = []
kpi_info = []
not_in_KPI = defaultdict(int)
for i in range(data_size):
_tqdm.set_description(f'checking...[{i}/{data_size}] max len: [{max_len}]')
orig = tokenizer.tokenize(" ".join(seq_data_cws[i]))
if deal_numeric:
# 得到元组信息,前两位是KPI下标范围
_kpi_info, kpi_type_list = extract_kpi(orig, kpi_dic, not_in_KPI)
kpi_info.append(_kpi_info)
kpi_static_set.update(kpi_type_list)
sub_total = []
ww_seq_tmp = []
ww_tmp = []
for sub_data in seq_data_cws[i]:
sub = tokenizer.tokenize(sub_data)
sub_total.extend(sub)
# 在whole word 里面添加#号
# 输入: ['异', '常']
ref_token = deal_sub_words(sub, special_token)
# 输出: ['异', '##常']
ww_seq_tmp.extend(ref_token)
ww_tmp.append(ref_token)
if sub_total != orig:
print("error in match... ")
if len(orig) > 512:
print("the lenth is over the max lenth")
pdb.set_trace()
# 变成[[...],[...],[...], ...]
# ww_return.append(ww_tmp)
sz_ww_seq = len(ww_seq_tmp)
# 求最大长度
max_len = sz_ww_seq if sz_ww_seq > max_len else max_len
if sz_ww_seq > 500:
sten_that_over_maxl.append((ww_seq_tmp, sz_ww_seq))
assert len(sub_total) == sz_ww_seq
ww_return.append(ww_seq_tmp)
ww_list.append(ww_tmp)
# pdb.set_trace()
_tqdm.update(1)
# pdb.set_trace()
if deal_numeric:
in_kpi = []
# pdb.set_trace()
for key in rev_kpi_dic.keys():
if key in kpi_static_set:
in_kpi.append(rev_kpi_dic[key])
if len(in_kpi) < len(rev_kpi_dic):
print(f"[{len(in_kpi)}] KPI are covered by data: {in_kpi}")
print(f" [{len(not_in_KPI)}] KPI无法匹配{not_in_KPI}")
else:
print("all KPI are covered!")
return ww_return, kpi_info, sten_that_over_maxl
def extract_num(seq_data_cws):
'''
功能:把序列中的数值信息提取出来
同时过滤 nan 数值
'''
num_ref = []
seq_data_cws_new = []
for j in range(len(seq_data_cws)):
num_index = [i for i, x in enumerate(seq_data_cws[j]) if x == '[NUM]']
# kpi_score = [float(seq_data_cws[i][index+1]) for index in num_index]
kpi_score = []
flag = 1
for index in num_index:
# if math.isnan(tmp):
# pdb.set_trace()
try:
tmp = float(seq_data_cws[j][index + 1])
except:
# pdb.set_trace()
flag = 0
continue
if math.isnan(tmp):
flag = 0
else:
kpi_score.append(tmp)
if len(num_index) > 0:
for index in reversed(num_index):
seq_data_cws[j].pop(index + 1)
if flag == 1:
num_ref.append(kpi_score)
seq_data_cws_new.append(seq_data_cws[j])
return seq_data_cws_new, num_ref
def extract_kpi(token_data, kpi_dic, not_in_KPI):
'''
功能:把序列中的[KPI]下标范围,[NUM]下标提取出来
输出格式: [(1,2,4),(5,6,7)]
'''
kpi_and_num_info = []
kpi_type = []
kpi_index = [i for i, x in enumerate(token_data) if x.lower() == '[kpi]']
num_index = [i for i, x in enumerate(token_data) if x.lower() == '[num]']
sz = len(kpi_index)
assert sz == len(num_index)
for i in range(sz):
# (kpi 开始,kpi 结束,NUM token位置)
# DONE: 添加KPI的类别
kpi_name = ''.join(token_data[kpi_index[i] + 1: num_index[i] - 1])
kpi_name_clear = kpi_name.replace('##', '')
if kpi_name in kpi_dic:
kpi_id = int(kpi_dic[kpi_name])
elif kpi_name_clear in kpi_dic:
kpi_id = int(kpi_dic[kpi_name_clear])
elif kpi_name_clear in not_in_KPI:
kpi_id = -1
not_in_KPI[kpi_name_clear] += 1
else:
# 只打印一次
not_in_KPI[kpi_name_clear] += 1
kpi_id = -1
# print(f"{kpi_name_clear} not in KPI dict")
kpi_info = [kpi_index[i] + 1, num_index[i] - 2, num_index[i], kpi_id]
kpi_and_num_info.append(kpi_info)
kpi_type.append(kpi_id)
# pdb.set_trace()
return kpi_and_num_info, kpi_type
def kpi_combine(kpi_info, num_ref):
sz = len(kpi_info)
assert sz == len(num_ref)
for i in range(sz):
for j in range(len(kpi_info[i])):
kpi_info[i][j].append(num_ref[i][j])
# pdb.set_trace()
return kpi_info
# 所有字母小写
def kpi_lower_update(kpi_dic):
new_dic = {}
for key in kpi_dic:
kk = key.lower().split()
kk = ''.join(kk).strip()
new_dic[kk] = kpi_dic[key]
return new_dic
if __name__ == '__main__':
'''
功能: 得到 chinese ref 文件,同时刷新训练/测试文件(仅针对序列的文本数据)
'''
cfg = cfg()
cfg.get_args()
cfgs = cfg.update_train_configs()
# 路径指定
domain_file_path = osp.join(cfgs.data_path, 'special_vocab.txt')
with open(domain_file_path, encoding="utf-8") as f:
ref = [line for line in f.read().splitlines() if (len(line) > 0 and not line.isspace())]
tokenizer = BertTokenizer.from_pretrained(osp.join(cfgs.data_root, 'transformer', 'MacBert'), do_lower_case=True)
seq_data_name = cfgs.seq_data_name
with open(osp.join(cfgs.data_path, f'{seq_data_name}.json'), "r") as fp:
seq_data = json.load(fp)
kpi_dic_name = 'kpi2id'
with open(osp.join(cfgs.data_path, f'{kpi_dic_name}.json'), "r") as fp:
kpi_dic = json.load(fp)
kpi_dic = kpi_lower_update(kpi_dic)
# 供测试
random.shuffle(seq_data)
# seq_data = seq_data[:500]
print(f"tokenizer size before: {len(tokenizer)}")
tokenizer, special_token, norm_token = add_special_token(tokenizer)
special_token = special_token + norm_token
print(f"tokenizer size after: {len(tokenizer)}")
print('------------------------ refresh data --------------------------------')
add_words = refresh_data(ref, cfgs.freq, special_token)
if not cfgs.read_cws:
print('------------------------ cws ----------------------------------')
seq_data_cws, data_size, error_data = cws(seq_data, add_words, cfgs.batch_size)
print(f'batch size is {cfgs.batch_size}')
if len(error_data) > 0:
with open(osp.join(cfgs.data_path, f'{seq_data_name}_error.json'), "w") as fp:
json.dump(error_data, fp, ensure_ascii=False)
save_path_cws_orig = osp.join(cfgs.data_path, f'{seq_data_name}_cws_orig.json')
print("get the new training data! saving...")
with open(save_path_cws_orig, 'w', ) as fp:
json.dump(seq_data_cws, fp, ensure_ascii=False)
else:
print('------------------------ read ----------------------------------')
save_path_cws = osp.join(cfgs.data_path, f'{seq_data_name}_cws_orig.json')
print("get the new training data!")
with open(save_path_cws, 'r', ) as fp:
seq_data_cws = json.load(fp)
data_size = len(seq_data_cws)
sz_orig = len(seq_data_cws)
if cfgs.deal_numeric:
seq_data_cws, num_ref = extract_num(seq_data_cws)
print(f"过滤了{sz_orig - len(seq_data_cws)}个无效句子")
data_size = len(seq_data_cws)
print('---------------------- generate chinese ref ------------------------------')
chinese_ref, kpi_info, sten_that_over_maxl = generate_chinese_ref(seq_data_cws, special_token, cfgs.deal_numeric, kpi_dic)
if len(sten_that_over_maxl) > 0:
print(f"{len(sten_that_over_maxl)} over the 500 len!")
save_path_max = osp.join(cfgs.data_path, f'{seq_data_name}_max_len_500.json')
with open(save_path_max, 'w') as fp:
json.dump(sten_that_over_maxl, fp, ensure_ascii=False)
if cfgs.deal_numeric:
print("KPI info combine")
kpi_ref = kpi_combine(kpi_info, num_ref)
# pdb.set_trace()
print('------------------------- match finished ------------------------------')
# 输出最后训练的时候用于做wwm的分词
save_path_ref = osp.join(cfgs.data_path, f'{seq_data_name}_chinese_ref.json')
with open(save_path_ref, 'w') as fp:
json.dump(chinese_ref, fp, ensure_ascii=False)
print(f"save chinese_ref done!")
seq_data_cws_output = []
for i in range(data_size):
seq = " ".join(seq_data_cws[i])
seq_data_cws_output.append(seq)
save_path_cws = osp.join(cfgs.data_path, f'{seq_data_name}_cws.json')
print("get the new training data!")
with open(save_path_cws, 'w', ) as fp:
json.dump(seq_data_cws_output, fp, ensure_ascii=False)
print("save seq_data_cws done!")
if cfgs.deal_numeric:
kpi_ref_path = osp.join(cfgs.data_path, f'{seq_data_name}_kpi_ref.json')
with open(kpi_ref_path, 'w', ) as fp:
json.dump(kpi_ref, fp, ensure_ascii=False)
print("save num and kpi done!")
|