File size: 5,976 Bytes
5d58b52 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
import os
import os.path as osp
import pdb
import torch
import torch.nn as nn
import numpy as np
from random import *
import json
from packaging import version
import torch.distributed as dist
from .Tool_model import AutomaticWeightedLoss
from .Numeric import AttenNumeric
from .KE_model import KE_model
# from modeling_transformer import Transformer
from .bert import BertModel, BertTokenizer, BertForMaskedLM, BertConfig
import torch.nn.functional as F
from copy import deepcopy
from src.utils import torch_accuracy
# 4.21.2
def debug(input, kk, begin=None):
aaa = deepcopy(input[0])
if begin is None:
aaa.input_ids = input[0].input_ids[:kk]
aaa.attention_mask = input[0].attention_mask[:kk]
aaa.chinese_ref = input[0].chinese_ref[:kk]
aaa.kpi_ref = input[0].kpi_ref[:kk]
aaa.labels = input[0].labels[:kk]
else:
aaa.input_ids = input[0].input_ids[begin:kk]
aaa.attention_mask = input[0].attention_mask[begin:kk]
aaa.chinese_ref = input[0].chinese_ref[begin:kk]
aaa.kpi_ref = input[0].kpi_ref[begin:kk]
aaa.labels = input[0].labels[begin:kk]
return aaa
class HWBert(nn.Module):
def __init__(self, args):
super().__init__()
self.loss_awl = AutomaticWeightedLoss(args.awl_num, args)
self.args = args
self.config = BertConfig()
model_name = args.model_name
if args.model_name in ['TeleBert', 'TeleBert2', 'TeleBert3']:
self.encoder = BertForMaskedLM.from_pretrained(osp.join(args.data_root, 'transformer', model_name))
# MacBert来初始化 predictions layer
if args.cls_head_init:
tmp = BertForMaskedLM.from_pretrained(osp.join(args.data_root, 'transformer', 'MacBert'))
self.encoder.cls.predictions = tmp.cls.predictions
else:
if not osp.exists(osp.join(args.data_root, 'transformer', args.model_name)):
model_name = 'MacBert'
self.encoder = BertForMaskedLM.from_pretrained(osp.join(args.data_root, 'transformer', model_name))
self.numeric_model = AttenNumeric(self.args)
# ----------------------- 主forward函数 ----------------------------------
def forward(self, input):
mask_loss, kpi_loss, kpi_loss_weight, kpi_loss_dict = self.mask_forward(input)
mask_loss = mask_loss.loss
loss_dic = {}
if not self.args.use_kpi_loss:
kpi_loss = None
if kpi_loss is not None:
loss_sum = self.loss_awl(mask_loss, 0.3 * kpi_loss)
loss_dic['kpi_loss'] = kpi_loss.item()
else:
loss_sum = self.loss_awl(mask_loss)
loss_dic['mask_loss'] = mask_loss.item()
return {
'loss': loss_sum,
'loss_dic': loss_dic,
'loss_weight': self.loss_awl.params.tolist(),
'kpi_loss_weight': kpi_loss_weight,
'kpi_loss_dict': kpi_loss_dict
}
# loss_sum, loss_dic, self.loss_awl.params.tolist(), kpi_loss_weight, kpi_loss_dict
# ----------------------------------------------------------------
# 测试代码,计算mask是否正确
def mask_prediction(self, inputs, tokenizer_sz, topk=(1,)):
token_num, token_right, word_num, word_right = None, None, None, None
outputs, kpi_loss, kpi_loss_weight, kpi_loss_dict = self.mask_forward(inputs)
inputs = inputs['labels'].view(-1)
input_list = inputs.tolist()
# 被修改的词
change_token_index = [i for i, x in enumerate(input_list) if x != -100]
change_token = torch.tensor(change_token_index)
inputs_used = inputs[change_token]
pred = outputs.logits.view(-1, tokenizer_sz)
pred_used = pred[change_token].cpu()
# 返回的list
# 计算acc
acc, token_right = torch_accuracy(pred_used, inputs_used, topk)
# 计算混乱分数
token_num = inputs_used.shape[0]
# TODO: 添加word_num, word_right
# token_right:list
return token_num, token_right, outputs.loss.item()
def mask_forward(self, inputs):
kpi_ref = None
if 'kpi_ref' in inputs:
kpi_ref = inputs['kpi_ref']
outputs, kpi_loss, kpi_loss_weight, kpi_loss_dict = self.encoder(
input_ids=inputs['input_ids'].cuda(),
attention_mask=inputs['attention_mask'].cuda(),
# token_type_ids=inputs.token_type_ids.cuda(),
labels=inputs['labels'].cuda(),
kpi_ref=kpi_ref,
kpi_model=self.numeric_model
)
return outputs, kpi_loss, kpi_loss_weight, kpi_loss_dict
# TODO: 垂直注意力考虑:https://github.com/lucidrains/axial-attention
def cls_embedding(self, inputs, tp='cls'):
hidden_states = self.encoder(
input_ids=inputs['input_ids'].cuda(),
attention_mask=inputs['attention_mask'].cuda(),
output_hidden_states=True)[0].hidden_states
if tp == 'cls':
return hidden_states[-1][:, 0]
else:
index_real = torch.tensor(inputs['input_ids'].clone().detach(), dtype=torch.bool)
res = []
for i in range(hidden_states[-1].shape[0]):
if tp == 'last_avg':
res.append(hidden_states[-1][i][index_real[i]][:-1].mean(dim=0))
elif tp == 'last2avg':
res.append((hidden_states[-1][i][index_real[i]][:-1] + hidden_states[-2][i][index_real[i]][:-1]).mean(dim=0))
elif tp == 'last3avg':
res.append((hidden_states[-1][i][index_real[i]][:-1] + hidden_states[-2][i][index_real[i]][:-1] + hidden_states[-3][i][index_real[i]][:-1]).mean(dim=0))
elif tp == 'first_last_avg':
res.append((hidden_states[-1][i][index_real[i]][:-1] + hidden_states[1][i][index_real[i]][:-1]).mean(dim=0))
return torch.stack(res)
|