File size: 17,045 Bytes
5d58b52 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 |
import os
import errno
import torch
import sys
import logging
import json
from pathlib import Path
import torch.distributed as dist
import csv
import os.path as osp
from time import time
from numpy import mean
import re
from transformers import AdamW, get_linear_schedule_with_warmup, get_cosine_schedule_with_warmup
import pdb
from torch import nn
# Huggingface的实现中,自带多种warmup策略
def set_optim(opt, model_list, freeze_part=[], accumulation_step=None):
# Bert optim
optimizer_list, scheduler_list, named_parameters = [], [], []
# cur_model = model.module if hasattr(model, 'module') else model
for model in model_list:
model_para = list(model.named_parameters())
model_para_train, freeze_layer = [], []
for n, p in model_para:
if not any(nd in n for nd in freeze_part):
model_para_train.append((n, p))
else:
p.requires_grad = False
freeze_layer.append((n, p))
named_parameters.extend(model_para_train)
# for name, param in model_list[0].named_parameters():
# if not param.requires_grad:
# print(name, param.size())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
# numeric_model 也包括到这个部分中
ke_part = ['ke_model', 'loss_awl', 'numeric_model', 'order']
if opt.LLRD:
# 按层次衰减的学习率
all_name_orig = [n for n, p in named_parameters if not any(nd in n for nd in ke_part)]
opt_parameters, all_name = LLRD(opt, named_parameters, no_decay, ke_part)
remain = list(set(all_name_orig) - set(all_name))
remain_parameters = [
{'params': [p for n, p in named_parameters if not any(nd in n for nd in no_decay) and n in remain], "lr": opt.lr, 'weight_decay': opt.weight_decay},
{'params': [p for n, p in named_parameters if any(nd in n for nd in no_decay) and n in remain], "lr": opt.lr, 'weight_decay': 0.0}
]
opt_parameters.extend(remain_parameters)
else:
opt_parameters = [
{'params': [p for n, p in named_parameters if not any(nd in n for nd in no_decay) and not any(nd in n for nd in ke_part)], "lr": opt.lr, 'weight_decay': opt.weight_decay},
{'params': [p for n, p in named_parameters if any(nd in n for nd in no_decay) and not any(nd in n for nd in ke_part)], "lr": opt.lr, 'weight_decay': 0.0}
]
ke_parameters = [
{'params': [p for n, p in named_parameters if not any(nd in n for nd in no_decay) and any(nd in n for nd in ke_part)], "lr": opt.ke_lr, 'weight_decay': opt.weight_decay},
{'params': [p for n, p in named_parameters if any(nd in n for nd in no_decay) and any(nd in n for nd in ke_part)], "lr": opt.ke_lr, 'weight_decay': 0.0}
]
opt_parameters.extend(ke_parameters)
optimizer = AdamW(opt_parameters, lr=opt.lr, eps=opt.adam_epsilon)
if accumulation_step is None:
accumulation_step = opt.accumulation_steps
if opt.scheduler == 'linear':
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=int(opt.warmup_steps/accumulation_step), num_training_steps=int(opt.total_steps/accumulation_step))
else:
scheduler = get_cosine_schedule_with_warmup(optimizer, num_warmup_steps=int(opt.warmup_steps/accumulation_step), num_training_steps=int(opt.total_steps/accumulation_step))
# ---- 判定所有参数是否被全部优化 ----
all_para_num = 0
for paras in opt_parameters:
all_para_num += len(paras['params'])
# pdb.set_trace()
assert len(named_parameters) == all_para_num
return optimizer, scheduler
# LLRD 学习率逐层衰减但
def LLRD(opt, named_parameters, no_decay, ke_part =[]):
opt_parameters = []
all_name = []
head_lr = opt.lr * 1.05
init_lr = opt.lr
lr = init_lr
# === Pooler and regressor ======================================================
params_0 = [p for n,p in named_parameters if ("pooler" in n or "regressor" in n or "predictions" in n)
and any(nd in n for nd in no_decay) and not any(nd in n for nd in ke_part)]
params_1 = [p for n,p in named_parameters if ("pooler" in n or "regressor" in n or "predictions" in n)
and not any(nd in n for nd in no_decay) and not any(nd in n for nd in ke_part)]
name_0 = [n for n,p in named_parameters if ("pooler" in n or "regressor" in n or "predictions" in n)
and any(nd in n for nd in no_decay) and not any(nd in n for nd in ke_part)]
name_1 = [n for n,p in named_parameters if ("pooler" in n or "regressor" in n or "predictions" in n)
and not any(nd in n for nd in no_decay) and not any(nd in n for nd in ke_part)]
all_name.extend(name_0)
all_name.extend(name_1)
head_params = {"params": params_0, "lr": head_lr, "weight_decay": 0.0}
opt_parameters.append(head_params)
head_params = {"params": params_1, "lr": head_lr, "weight_decay": 0.01}
opt_parameters.append(head_params)
# === 12 Hidden layers ==========================================================
for layer in range(11,-1,-1):
params_0 = [p for n,p in named_parameters if f"encoder.layer.{layer}." in n
and any(nd in n for nd in no_decay) and not any(nd in n for nd in ke_part)]
params_1 = [p for n,p in named_parameters if f"encoder.layer.{layer}." in n
and not any(nd in n for nd in no_decay) and not any(nd in n for nd in ke_part)]
layer_params = {"params": params_0, "lr": lr, "weight_decay": 0.0}
opt_parameters.append(layer_params)
layer_params = {"params": params_1, "lr": lr, "weight_decay": 0.01}
opt_parameters.append(layer_params)
name_0 = [n for n,p in named_parameters if f"encoder.layer.{layer}." in n
and any(nd in n for nd in no_decay) and not any(nd in n for nd in ke_part)]
name_1 = [n for n,p in named_parameters if f"encoder.layer.{layer}." in n
and not any(nd in n for nd in no_decay) and not any(nd in n for nd in ke_part)]
all_name.extend(name_0)
all_name.extend(name_1)
lr *= 0.95
# === Embeddings layer ==========================================================
params_0 = [p for n,p in named_parameters if ("embeddings" in n )
and any(nd in n for nd in no_decay) and not any(nd in n for nd in ke_part)]
params_1 = [p for n,p in named_parameters if ("embeddings" in n )
and not any(nd in n for nd in no_decay) and not any(nd in n for nd in ke_part)]
embed_params = {"params": params_0, "lr": lr, "weight_decay": 0.0}
opt_parameters.append(embed_params)
embed_params = {"params": params_1, "lr": lr, "weight_decay": 0.01}
opt_parameters.append(embed_params)
name_0 = [n for n,p in named_parameters if ("embeddings" in n )
and any(nd in n for nd in no_decay) and not any(nd in n for nd in ke_part)]
name_1 = [n for n,p in named_parameters if ("embeddings" in n )
and not any(nd in n for nd in no_decay) and not any(nd in n for nd in ke_part)]
all_name.extend(name_0)
all_name.extend(name_1)
return opt_parameters, all_name
class FixedScheduler(torch.optim.lr_scheduler.LambdaLR):
def __init__(self, optimizer, last_epoch=-1):
super(FixedScheduler, self).__init__(optimizer, self.lr_lambda, last_epoch=last_epoch)
def lr_lambda(self, step):
return 1.0
class WarmupLinearScheduler(torch.optim.lr_scheduler.LambdaLR):
def __init__(self, optimizer, warmup_steps, scheduler_steps, min_ratio, last_epoch=-1):
self.warmup_steps = warmup_steps
self.scheduler_steps = scheduler_steps
self.min_ratio = min_ratio
# self.fixed_lr = fixed_lr
super(WarmupLinearScheduler, self).__init__(
optimizer, self.lr_lambda, last_epoch=last_epoch
)
def lr_lambda(self, step):
if step < self.warmup_steps:
return (1 - self.min_ratio) * step / float(max(1, self.warmup_steps)) + self.min_ratio
# if self.fixed_lr:
# return 1.0
return max(0.0,
1.0 + (self.min_ratio - 1) * (step - self.warmup_steps) / float(max(1.0, self.scheduler_steps - self.warmup_steps)),
)
class Loss_log():
def __init__(self):
self.loss = []
self.acc = [0.]
self.flag = 0
self.token_right_num = []
self.token_all_num = []
self.word_right_num = []
self.word_all_num = []
# 默认不使用top_k acc
self.use_top_k_acc = 0
def acc_init(self, topn=[1]):
self.loss = []
self.token_right_num = []
self.token_all_num = []
self.topn = topn
self.use_top_k_acc = 1
self.top_k_word_right = {}
for n in topn:
self.top_k_word_right[n] = []
def time_init(self):
self.start = time()
self.last = self.start
self.time_used_epoch = []
def time_cpt(self, step, total_step):
# 时间统计
time_used_last_epoch = time() - self.last
self.time_used_epoch.append(time_used_last_epoch)
time_used = time() - self.start
self.last = time()
h, m, s = time_trans(time_used)
time_remain = int(total_step - step) * mean(self.time_used_epoch)
h_r, m_r, s_r = time_trans(time_remain)
return h, m, s, h_r, m_r, s_r
def get_token_acc(self):
# 返回list
if len(self.token_all_num) == 0:
return 0.
elif self.use_top_k_acc == 1:
res = []
for n in self.topn:
res.append(round((sum(self.top_k_word_right[n]) / sum(self.token_all_num)) * 100 , 3))
return res
else:
return [sum(self.token_right_num)/sum(self.token_all_num)]
def update_token(self, token_num, token_right):
# 输入是list文件
self.token_all_num.append(token_num)
if isinstance(token_right, list):
for i, n in enumerate(self.topn):
self.top_k_word_right[n].append(token_right[i])
self.token_right_num.append(token_right)
def update(self, case):
self.loss.append(case)
def update_acc(self, case):
self.acc.append(case)
def get_loss(self):
if len(self.loss) == 0:
return 500.
return mean(self.loss)
def get_acc(self):
return self.acc[-1]
def get_min_loss(self):
return min(self.loss)
def early_stop(self):
# min_loss = min(self.loss)
if self.loss[-1] > min(self.loss):
self.flag += 1
else:
self.flag = 0
if self.flag > 1000:
return True
else:
return False
def add_special_token(tokenizer, model=None, rank=0, cache_path = None):
# model: bert layer
# 每次更新这个,所有模型需要重新训练,get_chinese_ref.py需要重新运行
# 主函数调用该函数的位置需要在载入模型之前
# ---------------------------------------
# 不会被mask的 token, 不参与 任何时候的MASK
special_token = ['[SEP]', '[MASK]', '[ALM]', '[KPI]', '[CLS]', '[LOC]', '[EOS]', '[ENT]', '[ATTR]', '[NUM]', '[REL]', '|', '[DOC]']
# ---------------------------------------
# 会被mask的但是---#不加入#---tokenizer的内容
# 出现次数多(>10000)但是长度较长(>=4符)
# 或者是一些难以理解的名词
# WWM 的主体
# TODO: 专家检查
# To Add: 'SGSN', '3GPP', 'Bearer', 'sbim', 'FusionSphere', 'IMSI', 'GGSN', 'RETCODE', 'PCRF', 'PDP', 'GTP', 'OCS', 'HLR', 'FFFF', 'VLR', 'DNN', 'PID', 'CSCF', 'PDN', 'SCTP', 'SPGW', 'TAU', 'PCEF', 'NSA', 'ACL', 'BGP', 'USCDB', 'VoLTE', 'RNC', 'GPRS', 'DRA', 'MOC'
# 拆分:配置原则,本端规划
norm_token = ['网元实例', '事件类型', '告警级别', '告警名称', '告警源', '通讯系统', '默认值', '链路故障', '取值范围', '可选必选说明', '数据来源', '用户平面', '配置', '原则', '该参数', '失败次数', '可选参数', 'S1模式', '必选参数', 'IP地址', '响应消息', '成功次数', '测量指标', '用于', '统计周期', '该命令', '上下文', '请求次数', '本端', 'pod', 'amf', 'smf', 'nrf', 'ausf', 'upcf', 'upf', 'udm', 'PDU', 'alias', 'PLMN', 'MML', 'Info_Measure', 'icase', 'Diameter', 'MSISDN', 'RAT', 'RMV', 'PFCP', 'NSSAI', 'CCR', 'HDBNJjs', 'HNGZgd', 'SGSN', '3GPP', 'Bearer', 'sbim', 'FusionSphere', 'IMSI', 'GGSN', 'RETCODE', 'PCRF', 'PDP', 'GTP', 'OCS', 'HLR', 'FFFF', 'VLR', 'DNN', 'PID', 'CSCF', 'PDN', 'SCTP', 'SPGW', 'TAU', 'PCEF', 'NSA', 'ACL', 'BGP', 'USCDB', 'VoLTE', 'RNC', 'GPRS', 'DRA', 'MOC', '告警', '网元', '对端', '信令', '话单', '操作', '风险', '等级', '下发', '流控', '运营商', '寻呼', '漫游', '切片', '报文', '号段', '承载', '批量', '导致', '原因是', '影响', '造成', '引起', '随之', '情况下', '根因', 'trigger']
# ---------------------------------------
# , '', '', '', '', '', '', '', '', '', '', ''
# 会被mask的但是---#加入#---tokenizer的内容
# 长度小于等于3,缩写/专有名词 大于10000次
# 严谨性要求大于norm_token
# 出现次数多时有足够的影响力可以进行分离
norm_token_tobe_added = ['pod', 'amf', 'smf', 'nrf', 'ausf', 'upcf', 'upf', 'udm', 'ALM', '告警', '网元', '对端', '信令', '话单', 'RAN', 'MML', 'PGW', 'MME', 'SGW', 'NF', 'APN', 'LST', 'GW', 'QoS', 'IPv', 'PDU', 'IMS', 'EPS', 'GTP', 'PDP', 'LTE', 'HSS']
token_tobe_added = []
# all_token = special_token + norm_token_tobe_added
all_token = norm_token_tobe_added
for i in all_token:
if i not in tokenizer.vocab.keys() and i.lower() not in tokenizer.vocab.keys():
token_tobe_added.append(i)
# tokenizer.add_tokens(special_token, special_tokens=False)
# tokenizer.add_tokens(norm_token, special_tokens=False)
tokenizer.add_tokens(token_tobe_added, special_tokens=False)
special_tokens_dict = {"additional_special_tokens": special_token}
special_token_ = tokenizer.add_special_tokens(special_tokens_dict)
if rank == 0:
print("Added tokens:")
print(tokenizer.get_added_vocab())
# pdb.set_trace()
if model is not None:
# TODO: 用预训练好的TeleBert进行这部分embedding(所有添加的embedding)的初始化
if rank == 0:
print(f"--------------------------------")
print(f"-------- orig word embedding shape: {model.get_input_embeddings().weight.shape}")
sz = model.resize_token_embeddings(len(tokenizer))
if cache_path is not None:
# model.cpu()
token_2_emb = torch.load(cache_path)
# 在这里加入embedding 初始化之后需要tie一下
token_dic = tokenizer.get_added_vocab()
id_2_token = {v:k for k,v in token_dic.items()}
with torch.no_grad():
for key in id_2_token.keys():
model.bert.embeddings.word_embeddings.weight[key,:] = nn.Parameter(token_2_emb[id_2_token[key]][0]).cuda()
# model.get_input_embeddings().weight[key,:] = nn.Parameter(token_2_emb[id_2_token[key]][0]).cuda()
# model.embedding
model.bert.tie_weights()
if rank == 0:
print(f"-------- resize_token_embeddings into {sz} done!")
print(f"--------------------------------")
# 这里替换embedding
norm_token = list(set(norm_token).union(set(norm_token_tobe_added)))
return tokenizer, special_token, norm_token
def time_trans(sec):
m, s = divmod(sec, 60)
h, m = divmod(m, 60)
return int(h), int(m), int(s)
def torch_accuracy(output, target, topk=(1,)):
'''
param output, target: should be torch Variable
'''
# assert isinstance(output, torch.cuda.Tensor), 'expecting Torch Tensor'
# assert isinstance(target, torch.Tensor), 'expecting Torch Tensor'
# print(type(output))
topn = max(topk)
batch_size = output.size(0)
_, pred = output.topk(topn, 1, True, True) # 返回(values,indices)其中indices就是预测类别的值,0为第一类
pred = pred.t() # torch.t()转置,既可得到每一行为batch最好的一个预测序列
is_correct = pred.eq(target.view(1, -1).expand_as(pred))
ans = []
ans_num = []
for i in topk:
# is_correct_i = is_correct[:i].view(-1).float().sum(0, keepdim=True)
is_correct_i = is_correct[:i].contiguous().view(-1).float().sum(0, keepdim=True)
ans_num.append(int(is_correct_i.item()))
ans.append(is_correct_i.mul_(100.0 / batch_size))
return ans, ans_num
|