File size: 30,396 Bytes
891db93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
import os
import json
import unicodedata
from typing import Any, Dict, List, Optional, Tuple, Union
from collections.abc import Mapping
from collections import Counter
import itertools
import torch

from transformers.tokenization_utils import PreTrainedTokenizer, PaddingStrategy, TruncationStrategy, TensorType, BatchEncoding
from transformers.utils import logging, is_torch_tensor

TextInput = str
PreTokenizedInput = List[str]
EncodedInput = List[List[int]]
TextInputPair = Tuple[TextInput, TextInput]
PreTokenizedInputPair = Tuple[PreTokenizedInput, PreTokenizedInput]
EncodedInputPair = Tuple[EncodedInput, EncodedInput]

logger = logging.get_logger(__name__)

VOCAB_FILES_NAMES = {"vocab_file": "vocab.json"}

# TODO: add support for return_offsets_mapping

class HLMTokenizer(PreTrainedTokenizer):
    r"""
    Constructs a HLM tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece).

    Args:
        vocab_file (`str`):
            Path to .json vocab file.
        bos_token (`string`, *optional*, defaults to `"[CLS]"`):
            The beginning of sequence token that was used during pre-training. Can be used a sequence classifier token.
            When building a sequence using special tokens, this is not the token that is used for the beginning of
            sequence. The token used is the `cls_token`.
        eos_token (`string`, *optional*, defaults to `"[SEP]"`):
            The end of sequence token. When building a sequence using special tokens, this is not the token that is
            used for the end of sequence. The token used is the `sep_token`.
        unk_token (`str`, *optional*, defaults to `"[UNK]"`):
            The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
            token instead.
        sep_token (`str`, *optional*, defaults to `"[SEP]"`):
            The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
            sequence classification or for a text and a question for question answering. It is also used as the last
            token of a sequence built with special tokens.
        pad_token (`str`, *optional*, defaults to `"[PAD]"`):
            The token used for padding, for example when batching sequences of different lengths.
        cls_token (`str`, *optional*, defaults to `"[CLS]"`):
            The classifier token which is used when doing sequence classification (classification of the whole sequence
            instead of per-token classification). It is the first token of the sequence when built with special tokens.
        mask_token (`str`, *optional*, defaults to `"[MASK]"`):
            The token used for masking values. This is the token used when training this model with masked language
            modeling. This is the token which the model will try to predict.
        word_cls_token (`str`, *optional*, defaults to `"[WORD_CLS]"`):
            The classifier token which is used for word representations and word classification.
            It is the first token of each word when built with special tokens.
    """

    vocab_files_names = VOCAB_FILES_NAMES
    model_input_names: List[str] = ["input_ids", "char_input_mask", "word_input_mask", "word_type_ids"]
    padding_side: str = "right"
    truncation_side: str = "right"

    def __init__(
        self,
        vocab_file,
        split_by_punct=False,
        bos_token="[CLS]",
        eos_token="[SEP]",
        unk_token="[UNK]",
        sep_token="[SEP]",
        pad_token="[PAD]",
        cls_token="[CLS]",
        mask_token="[MASK]",
        word_cls_token="[WORD_CLS]",
        max_word_length=None,
        model_max_length=None,
        **kwargs,
    ) -> None:
        if not os.path.isfile(vocab_file):
            raise ValueError(
                f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a pretrained"
                " model use `tokenizer = AutoTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
            )

        if max_word_length is not None:
            self.max_word_length = max_word_length
        else:
            try:
                with open(os.path.dirname(vocab_file) + "/config.json", "r") as f:
                    config = json.load(f)
                    self.max_word_length = config["max_word_length"]
                    if model_max_length is None:
                        model_max_length = config.get("max_seq_length", None)
            except:
                raise ValueError("Failed to load max_word_length from config.json. Please specify max_word_length.")

        self.split_by_punct = split_by_punct
        self.vocab_file = vocab_file
        with open(vocab_file, 'r', encoding='utf-8') as f:
            vocab_data = json.load(f)
            self.vocab = vocab_data["vocab"]
            self.inv_vocab = {v: k for k, v in self.vocab.items()}

        super().__init__(
            bos_token=bos_token,
            eos_token=eos_token,
            unk_token=unk_token,
            sep_token=sep_token,
            pad_token=pad_token,
            cls_token=cls_token,
            mask_token=mask_token,
            split_by_punct=split_by_punct,
            model_max_length=model_max_length,
            **kwargs,
        )
        self.unk_id = self.vocab["[UNK]"]
        self.word_cls_token = word_cls_token 
        self.word_cls_token_id = self._convert_token_to_id(word_cls_token)
        self.label_pad_token_id = -100
        self.special_ids = [self._convert_token_to_id(token) for token in vocab_data["special_tokens"]]

        #self.pad_word = [[self.word_cls_token_id] + [0]*(self.max_word_length-1)]
        #self.pad_mask_word = [[1] + [0]*(self.max_word_length-1)]
        self.pad_word = [[0] + [0]*(self.max_word_length-1)]
        self.pad_mask_word = [[0] + [0]*(self.max_word_length-1)]

    @staticmethod
    def train(files: List[Union[str, os.PathLike]], output_dir: Union[str, os.PathLike], vocab_size: int=512, max_lines_to_consider=2_000_000):
        char_maps = []
        # Each input file is weighted equally, regardless of size
        # This is to prevent one language from dominating the character distribution
        for file in files:
            print('Loading char counts from', file)
            counter = Counter()
            line_count = 0
            with open(file, "r", encoding="utf-8") as file:
                while line_count < max_lines_to_consider:
                    lines = file.readlines(100*1024)
                    if len(lines) == 0:
                        break
                    for line in lines:
                        line = unicodedata.normalize('NFKC', line)
                        line_count += 1
                        counter.update(line)
            d = {}
            total = counter.total()
            for char, count in counter.items():
                d[char] = count / total
            char_maps.append(d)

        char_map = {}
        for d in char_maps:
            for char, freq in d.items():
                if not char.isspace():
                    char_map[char] = char_map.get(char, 0) + freq

        special_tokens = ['[PAD]', '[UNK]', '[CLS]', '[SEP]', '[MASK]', '[WORD_CLS]']
        chars_to_keep = sorted(list(char_map.keys()), key=lambda c: char_map[c], reverse=True)[:vocab_size-len(special_tokens)]
        vocab_entries = [*special_tokens, *chars_to_keep]

        vocab = {
            'special_tokens': special_tokens,
            'vocab': { key: i for i, key in enumerate(vocab_entries) }
        }

        assert(len(vocab_entries) == vocab_size)

        filename = os.path.join(output_dir, VOCAB_FILES_NAMES["vocab_file"])
        os.makedirs(output_dir, exist_ok=True)
        print("Saving vocab to", filename)
        with open(filename, 'w', encoding='utf-8') as f:
            json.dump(vocab, f, ensure_ascii=False, indent=4)

        return filename

    @property
    def vocab_size(self):
        return len(self.vocab)

    def get_vocab(self):
        return self.vocab

    def _convert_token_to_id(self, token):
        """Converts a token (str) to an id using the vocab."""
        return self.vocab.get(token, self.unk_id)

    def _convert_id_to_token(self, index):
        """Converts an index (integer) in a token (str) using the vocab."""
        return self.inv_vocab[index] if index < self.vocab_size else self.unk_token

    def convert_tokens_to_ids(self, tokens: Union[str, List[str], List[List[str]]]):
        if isinstance(tokens, str):
            return self._convert_token_to_id(tokens)
        if len(tokens) > 0 and isinstance(tokens[0], str):
            return [self._convert_token_to_id(token) for token in tokens]
        return [[self._convert_token_to_id(token) for token in word] for word in tokens]

    def convert_tokens_to_string(self, tokens):
        """Converts a sequence of tokens (string) in a single string."""
        raise NotImplementedError

    def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
        if token_ids_1 is None:
            return [[self.cls_token_id]] + token_ids_0 + [[self.eos_token_id]]
        return [[self.cls_token_id]] + token_ids_0 + [[self.eos_token_id], [self.cls_token_id]] + token_ids_1 + [[self.eos_token_id]]

    def num_special_tokens_to_add(self, pair: bool = False) -> int:
        return 3 if pair else 2

    def get_special_tokens_mask(self, token_ids_0, token_ids_1=None, already_has_special_tokens=False):
        raise NotImplementedError

    def create_token_type_ids_from_sequences(self, token_ids_0, token_ids_1=None, has_special_tokens=False):
        if has_special_tokens:
            return [0] * (len(token_ids_0)+2) + ([1] * (len(token_ids_1)+2) if token_ids_1 is not None else [])
        else:
            return [0] * len(token_ids_0) + ([1] * len(token_ids_1) if token_ids_1 is not None else [])

    def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
        filename = VOCAB_FILES_NAMES["vocab_file"]
        if filename_prefix is not None:
            filename = filename_prefix + "-" + filename
        full_path = os.path.join(save_directory, filename)
        with open(full_path, "w", encoding="utf-8") as f:
            json.dump({
                "special_tokens": self.all_special_tokens,
                "vocab": self.get_vocab(),
            }, f, ensure_ascii=False, indent=4)
        return (full_path,)

    def encode(
        self,
        text: Union[TextInput, PreTokenizedInput, EncodedInput],
        text_pair: Optional[Union[TextInput, PreTokenizedInput, EncodedInput]] = None,
        is_split_into_words: bool = False,
        add_special_tokens: bool = False,
        padding: Union[bool, str, PaddingStrategy] = False,
        truncation: Union[bool, str, TruncationStrategy] = None,
        max_length: Optional[int] = None,
        return_tensors: Optional[Union[str, TensorType]] = None,
        **kwargs,
    ) -> List[int]:
        def get_input_ids(text):
            if isinstance(text, str):
                tokens = self.tokenize(text, **kwargs)
                return self.convert_tokens_to_ids(tokens)
            elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], str):
                if is_split_into_words:
                    tokens = list(
                        itertools.chain(*(self.tokenize(t, is_split_into_words=True, **kwargs) for t in text))
                    )
                    return self.convert_tokens_to_ids(tokens)
                else:
                    return self.convert_tokens_to_ids(text)
            elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], List[int]):
                return text
            else:
                raise ValueError(
                    f"Input {text} is not valid. Should be a string, a list/tuple of strings or a list/tuple of integers.")

        first_ids = get_input_ids(text)
        second_ids = get_input_ids(text_pair) if text_pair is not None else None

        if add_special_tokens:
            sequence = self.build_inputs_with_special_tokens(first_ids, second_ids)
        else:
            sequence = first_ids

        return sequence

    def prepare_for_model(
        self,
        ids: List[List[int]],
        pair_ids: Optional[List[List[int]]] = None,
        add_special_tokens: bool = True,
        padding: Union[bool, str, PaddingStrategy] = False,
        truncation: Union[bool, str, TruncationStrategy] = None,
        max_length: Optional[int] = None,
        stride: int = 0,
        pad_to_multiple_of: Optional[int] = None,
        return_tensors: Optional[Union[str, TensorType]] = None,
        return_token_type_ids: Optional[bool] = None,
        return_attention_mask: bool = True,
        return_overflowing_tokens: bool = False,
        return_special_tokens_mask: bool = False,
        return_offsets_mapping: bool = False,
        return_length: bool = False,
        verbose: bool = True,
        add_word_cls: bool = True,
        prepend_batch_axis: bool = False,
        **kwargs,
    ) -> BatchEncoding:
        """
        Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by the model. It
        adds special tokens, truncates sequences if overflowing while taking into account the special tokens and
        manages a moving window (with user defined stride) for overflowing tokens.

        Args:
            ids (`List[List[int]]`):
                Tokenized input ids of the first sequence. Can be obtained from a string by chaining the `tokenize` and
                `convert_tokens_to_ids` methods.
            pair_ids (`List[List[int]]`, *optional*):
                Tokenized input ids of the second sequence. Can be obtained from a string by chaining the `tokenize`
                and `convert_tokens_to_ids` methods.
        """

        # Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
        padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
            padding=padding,
            truncation=truncation,
            max_length=max_length,
            pad_to_multiple_of=pad_to_multiple_of,
            verbose=verbose,
            **kwargs,
        )

        pair = bool(pair_ids is not None)
        len_pair_ids = len(pair_ids) if pair else 0

        if return_token_type_ids and not add_special_tokens:
            raise ValueError(
                "Asking to return token_type_ids while setting add_special_tokens to False "
                "results in an undefined behavior. Please set add_special_tokens to True or "
                "set return_token_type_ids to None."
            )

        if (
            return_overflowing_tokens
            and truncation_strategy == TruncationStrategy.LONGEST_FIRST
            and pair_ids is not None
        ):
            raise ValueError(
                "Not possible to return overflowing tokens for pair of sequences with the "
                "`longest_first`. Please select another truncation strategy than `longest_first`, "
                "for instance `only_second` or `only_first`."
            )

        encoded_inputs = {}

        # Compute the total size of the returned encodings
        total_len = len(ids) + len_pair_ids + (self.num_special_tokens_to_add(pair=pair) if add_special_tokens else 0)

        # Truncation: Handle max sequence length
        overflowing_tokens = []
        if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE and max_length and total_len > max_length:
            ids, pair_ids, overflowing_tokens = self.truncate_sequences(
                ids,
                pair_ids=pair_ids,
                num_tokens_to_remove=total_len - max_length,
                truncation_strategy=truncation_strategy,
                stride=stride,
            )

        if return_overflowing_tokens:
            encoded_inputs["overflowing_tokens"] = overflowing_tokens
            encoded_inputs["num_truncated_tokens"] = total_len - max_length

        if add_special_tokens:
            sequence = self.build_inputs_with_special_tokens(ids, pair_ids)
        else:
            sequence = ids + pair_ids if pair else ids

        if add_word_cls:
            for word in sequence:
                word.insert(0, self.word_cls_token_id)

        # Build output dictionary
        encoded_inputs["input_ids"] = sequence
        encoded_inputs["char_input_mask"] = [[1]*len(word)+[0]*(self.max_word_length-len(word)) for word in sequence]
        encoded_inputs["word_input_mask"] = [1]*len(sequence)
        if return_token_type_ids or pair:
            encoded_inputs["word_type_ids"] = self.create_token_type_ids_from_sequences(ids, pair_ids, add_special_tokens)
            assert len(encoded_inputs["word_type_ids"]) == len(encoded_inputs["word_input_mask"])

        # Always pad words 
        for word in encoded_inputs["input_ids"]:
            if len(word) < self.max_word_length:
                word.extend([self.pad_token_id] * (self.max_word_length - len(word)))

        # Padding
        if padding_strategy != PaddingStrategy.DO_NOT_PAD or return_attention_mask:
            encoded_inputs = self.pad(
                encoded_inputs,
                max_length=max_length,
                padding=padding_strategy.value,
                pad_to_multiple_of=pad_to_multiple_of,
                return_attention_mask=return_attention_mask,
            )

        batch_outputs = BatchEncoding(
            encoded_inputs, tensor_type=return_tensors, prepend_batch_axis=prepend_batch_axis
        )

        return batch_outputs
    
    def _encode_plus(
        self,
        text: Union[TextInput, PreTokenizedInput, EncodedInput],
        text_pair: Optional[Union[TextInput, PreTokenizedInput, EncodedInput]] = None,
        add_special_tokens: bool = True,
        padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
        truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
        max_length: Optional[int] = None,
        stride: int = 0,
        is_split_into_words: bool = False,
        pad_to_multiple_of: Optional[int] = None,
        return_tensors: Optional[Union[str, TensorType]] = None,
        return_token_type_ids: Optional[bool] = None,
        return_attention_mask: Optional[bool] = None,
        return_overflowing_tokens: bool = False,
        return_special_tokens_mask: bool = False,
        return_offsets_mapping: bool = False,
        return_length: bool = False,
        verbose: bool = True,
        add_word_cls: bool = True,
        **kwargs,
    ) -> BatchEncoding:
        def get_input_ids(text):
            if isinstance(text, str):
                tokens = self.tokenize(text, **kwargs)
                return self.convert_tokens_to_ids(tokens)
            elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], str):
                if is_split_into_words:
                    tokens = list(
                        itertools.chain(*(self.tokenize(t, is_split_into_words=True, **kwargs) for t in text))
                    )
                    return self.convert_tokens_to_ids(tokens)
                else:
                    return self.convert_tokens_to_ids(text)
            elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], List[int]):
                return text
            else:
                raise ValueError(
                    f"Input {text} is not valid. Should be a string, a list/tuple of strings or a list/tuple of integers.")

        if return_offsets_mapping:
            raise NotImplementedError(
                "return_offset_mapping is not available when using Python tokenizers. "
                "To use this feature, change your tokenizer to one deriving from "
                "transformers.PreTrainedTokenizerFast. "
                "More information on available tokenizers at "
                "https://github.com/huggingface/transformers/pull/2674"
            )

        first_ids = get_input_ids(text)
        second_ids = get_input_ids(text_pair) if text_pair is not None else None

        return self.prepare_for_model(
            first_ids,
            pair_ids=second_ids,
            add_special_tokens=add_special_tokens,
            padding=padding_strategy.value,
            truncation=truncation_strategy.value,
            max_length=max_length,
            stride=stride,
            pad_to_multiple_of=pad_to_multiple_of,
            return_tensors=return_tensors,
            prepend_batch_axis=True,
            return_attention_mask=return_attention_mask,
            return_token_type_ids=return_token_type_ids,
            return_overflowing_tokens=return_overflowing_tokens,
            return_special_tokens_mask=return_special_tokens_mask,
            return_length=return_length,
            verbose=verbose,
            add_word_cls=add_word_cls,
        )

    def _batch_encode_plus(
        self,
        batch_text_or_text_pairs: Union[
            List[TextInput],
            List[TextInputPair],
            List[PreTokenizedInput],
            List[PreTokenizedInputPair],
            List[EncodedInput],
            List[EncodedInputPair],
        ],
        add_special_tokens: bool = True,
        padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
        truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
        max_length: Optional[int] = None,
        stride: int = 0,
        is_split_into_words: bool = False,
        pad_to_multiple_of: Optional[int] = None,
        return_tensors: Optional[Union[str, TensorType]] = None,
        return_token_type_ids: Optional[bool] = None,
        return_attention_mask: Optional[bool] = None,
        return_overflowing_tokens: bool = False,
        return_special_tokens_mask: bool = False,
        return_offsets_mapping: bool = False,
        return_length: bool = False,
        verbose: bool = True,
        **kwargs,
    ) -> BatchEncoding:
        def get_input_ids(text):
            if isinstance(text, str):
                tokens = self.tokenize(text, **kwargs)
                return self.convert_tokens_to_ids(tokens)
            elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], str):
                if is_split_into_words:
                    tokens = list(
                        itertools.chain(*(self.tokenize(t, is_split_into_words=True, **kwargs) for t in text))
                    )
                    return self.convert_tokens_to_ids(tokens)
                else:
                    return self.convert_tokens_to_ids(text)
            elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], List[int]):
                return text
            else:
                raise ValueError(
                    "Input is not valid. Should be a string, a list/tuple of strings or a list/tuple of integers."
                )

        if return_offsets_mapping:
            raise NotImplementedError(
                "return_offset_mapping is not available when using Python tokenizers. "
                "To use this feature, change your tokenizer to one deriving from "
                "transformers.PreTrainedTokenizerFast."
            )

        input_ids = []
        for ids_or_pair_ids in batch_text_or_text_pairs:
            if not isinstance(ids_or_pair_ids, (list, tuple)):
                ids, pair_ids = ids_or_pair_ids, None
            elif is_split_into_words and not isinstance(ids_or_pair_ids[0], (list, tuple)):
                ids, pair_ids = ids_or_pair_ids, None
            else:
                ids, pair_ids = ids_or_pair_ids

            first_ids = get_input_ids(ids)
            second_ids = get_input_ids(pair_ids) if pair_ids is not None else None
            input_ids.append((first_ids, second_ids))

        batch_outputs = self._batch_prepare_for_model(
            input_ids,
            add_special_tokens=add_special_tokens,
            padding_strategy=padding_strategy,
            truncation_strategy=truncation_strategy,
            max_length=max_length,
            stride=stride,
            pad_to_multiple_of=pad_to_multiple_of,
            return_attention_mask=return_attention_mask,
            return_token_type_ids=return_token_type_ids,
            return_overflowing_tokens=return_overflowing_tokens,
            return_special_tokens_mask=return_special_tokens_mask,
            return_length=return_length,
            return_tensors=return_tensors,
            verbose=verbose,
        )

        return BatchEncoding(batch_outputs)

    def tokenize(self, text: str, pair: Optional[str] = None, add_special_tokens: bool = False, split_long_words: bool = True) -> List[List[str]]:
        text = unicodedata.normalize('NFKC', text)
        if split_long_words:
            tokenized_text = []
            for token in text.split():
                tokens = [char for char in token]
                tokenized_text.extend(
                    tokens[i: i + self.max_word_length - 1] for i in range(0, len(tokens), self.max_word_length - 1))
            return tokenized_text
        else:
            return [[char for char in token] for token in text.split()]

    def pad(
        self,
        encoded_inputs: Union[
            BatchEncoding,
            List[BatchEncoding],
            Dict[str, EncodedInput],
            Dict[str, List[EncodedInput]],
            List[Dict[str, EncodedInput]],
        ],
        padding: Union[bool, str, PaddingStrategy] = True,
        max_length: Optional[int] = None,
        pad_to_multiple_of: Optional[int] = None, # TODO: add support for pad_to_multiple_of
        return_attention_mask: Optional[bool] = None,
        return_tensors: Optional[Union[str, TensorType]] = None,
        #label_pad_token_id=-100,
        verbose: bool = True,
    ) -> BatchEncoding:
        # If we have a list of dicts, let's convert it in a dict of lists
        # We do this to allow using this method as a collate_fn function in PyTorch Dataloader
        if isinstance(encoded_inputs, (list, tuple)) and isinstance(encoded_inputs[0], Mapping):
            encoded_inputs = {key: [example[key] for example in encoded_inputs] for key in encoded_inputs[0].keys()}

        # The model's main input name, usually `input_ids`, has be passed for padding
        #if self.model_input_names[0] not in encoded_inputs:
        #    raise ValueError(
        #        "You should supply an encoding or a list of encodings to this method "
        #        f"that includes {self.model_input_names[0]}, but you provided {list(encoded_inputs.keys())}"
        #    )

        required_input = encoded_inputs["input_ids"]

        #if required_input is None or (isinstance(required_input, Sized) and len(required_input) == 0):
        #    if return_attention_mask:
        #        encoded_inputs["char_input_mask"] = []
        #        encoded_inputs["word_input_mask"] = []
        #    return encoded_inputs

        # If we have PyTorch/TF/NumPy tensors/arrays as inputs, we cast them as python objects
        # and rebuild them afterwards if no return_tensors is specified
        # Note that we lose the specific device the tensor may be on for PyTorch

        #first_element = required_input[0]
        ## At this state, if `first_element` is still a list/tuple, it's an empty one so there is nothing to do.
        #if not isinstance(first_element, (int, list, tuple)):
        #    if is_torch_tensor(first_element):
        #        return_tensors = "pt" if return_tensors is None else return_tensors

        #    for key, value in encoded_inputs.items():
        #        encoded_inputs[key] = to_py_obj(value)

        # Convert padding_strategy in PaddingStrategy
        padding_strategy, _, max_length, _ = self._get_padding_truncation_strategies(
            padding=padding, max_length=max_length, verbose=verbose)

        if padding_strategy == PaddingStrategy.DO_NOT_PAD:
            return encoded_inputs

        assert (padding_strategy == PaddingStrategy.LONGEST)

        longest_in_batch = max(len(f) for f in required_input)
        batch_outputs = {}
        batch_outputs["input_ids"] = [f + self.pad_word*(longest_in_batch - len(f)) for f in encoded_inputs["input_ids"]]
        batch_outputs["char_input_mask"] = [f + self.pad_mask_word*(longest_in_batch - len(f)) for f in encoded_inputs["char_input_mask"]]

        batch_outputs["word_input_mask"] = \
            [f + [0]*(longest_in_batch - len(f)) for f in encoded_inputs['word_input_mask']]
        
        if "word_type_ids" in encoded_inputs:
            batch_outputs["word_type_ids"] = [f + [0]*(longest_in_batch - len(f)) for f in encoded_inputs["word_type_ids"]]

        batch_outputs["char_input_mask"] = torch.tensor(batch_outputs["char_input_mask"], dtype=torch.bool)
        batch_outputs["word_input_mask"] = torch.tensor(batch_outputs["word_input_mask"], dtype=torch.bool)

        # TODO: move label names elsewhere
        label_fields = ('labels', 'upos', 'feats', 'heads', 'deprels', 'lemmas')
        label_names = [feature for feature in encoded_inputs.keys() if feature in label_fields]

        if len(label_names) > 0:
            def to_list(tensor_or_iterable):
                if is_torch_tensor(tensor_or_iterable):
                    return tensor_or_iterable.tolist()
                return list(tensor_or_iterable)

            for label_name in label_names:
                if label_name not in encoded_inputs:
                    continue
                labels = encoded_inputs[label_name]
                label_pad_word = [[self.label_pad_token_id]*self.max_word_length]
                if self.padding_side == "right":
                    batch_outputs[label_name] = [
                        to_list(label) + label_pad_word * (longest_in_batch - len(label)) for label in labels
                    ]
                else:
                    batch_outputs[label_name] = [
                        label_pad_word * (longest_in_batch - len(label)) + to_list(label) for label in labels
                    ]
        
        return BatchEncoding(batch_outputs, tensor_type=return_tensors)