File size: 4,228 Bytes
891db93 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
---
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
- semantic-search
---
# sge-hlm
## Sentence embeddings for English and Ancient Greek
The HLM model architecture is based on [Heidelberg-Boston @ SIGTYP 2024 Shared Task: Enhancing Low-Resource Language Analysis With Character-Aware Hierarchical Transformers](https://aclanthology.org/2024.sigtyp-1.16/) but uses a simpler architecture with rotary embeddings (see the implementation in the `HLM` folder) instead of using DeBERTa as a base architecture. This architecture produces superior results compared to the vanilla BERT architecture for low-resource languages like Ancient Greek. It is trained to produce sentence embeddings using the method described in [Sentence Embedding Models for Ancient Greek Using Multiligual Knowledge Distillation](https://aclanthology.org/2023.alp-1.2/).
This model was distilled from `BAAI/bge-base-en-v1.5` for embedding English and Ancient Greek text.
## Usage (Sentence-Transformers)
Using [sentence-transformers](https://www.SBERT.net):
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('kevinkrahn/shlm-grc-en')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
def cls_pooling(model_output, attention_mask):
return model_output[0][:,0]
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('kevinkrahn/shlm-grc-en')
model = AutoModel.from_pretrained('kevinkrahn/shlm-grc-en')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, cls pooling.
sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Citing & Authors
```
@inproceedings{riemenschneider-krahn-2024-heidelberg,
title = "Heidelberg-Boston @ {SIGTYP} 2024 Shared Task: Enhancing Low-Resource Language Analysis With Character-Aware Hierarchical Transformers",
author = "Riemenschneider, Frederick and
Krahn, Kevin",
editor = "Hahn, Michael and
Sorokin, Alexey and
Kumar, Ritesh and
Shcherbakov, Andreas and
Otmakhova, Yulia and
Yang, Jinrui and
Serikov, Oleg and
Rani, Priya and
Ponti, Edoardo M. and
Murado{\u{g}}lu, Saliha and
Gao, Rena and
Cotterell, Ryan and
Vylomova, Ekaterina",
booktitle = "Proceedings of the 6th Workshop on Research in Computational Linguistic Typology and Multilingual NLP",
month = mar,
year = "2024",
address = "St. Julian's, Malta",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.sigtyp-1.16",
pages = "131--141",
}
```
```
@inproceedings{krahn-etal-2023-sentence,
title = "Sentence Embedding Models for {A}ncient {G}reek Using Multilingual Knowledge Distillation",
author = "Krahn, Kevin and
Tate, Derrick and
Lamicela, Andrew C.",
editor = "Anderson, Adam and
Gordin, Shai and
Li, Bin and
Liu, Yudong and
Passarotti, Marco C.",
booktitle = "Proceedings of the Ancient Language Processing Workshop",
month = sep,
year = "2023",
address = "Varna, Bulgaria",
publisher = "INCOMA Ltd., Shoumen, Bulgaria",
url = "https://aclanthology.org/2023.alp-1.2",
pages = "13--22",
}
``` |