|
import torch |
|
from torch import nn |
|
import torch.nn.functional as F |
|
|
|
from dataclasses import dataclass |
|
import copy |
|
|
|
from transformers.modeling_outputs import BaseModelOutput, ModelOutput, MaskedLMOutput, TokenClassifierOutput, SequenceClassifierOutput |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers import AutoConfig, AutoModel, AutoModelForTokenClassification, AutoModelForMaskedLM, AutoTokenizer, AutoModelForSequenceClassification |
|
from .configuration_hlm import HLMConfig, HLMEncoderConfig |
|
from .tokenization_hlm import HLMTokenizer |
|
|
|
from typing import Tuple, Optional, Union |
|
|
|
@dataclass |
|
class HLMBaseModelOutput(ModelOutput): |
|
last_hidden_state: torch.FloatTensor = None |
|
hidden_states: Tuple[torch.FloatTensor] = None |
|
attentions: Tuple[torch.FloatTensor] = None |
|
|
|
initial_embeds: torch.FloatTensor = None |
|
initial_word_embeds: torch.FloatTensor = None |
|
intra_word_mask: torch.LongTensor = None |
|
char_embeds: torch.LongTensor = None |
|
input_shape: Tuple[int, int, int, int] = None |
|
|
|
|
|
class HLMEncoder(nn.Module): |
|
_dynamic_tied_weights_keys = [] |
|
|
|
def __init__(self, config) -> None: |
|
super().__init__() |
|
|
|
if config.sandwich_size > 0: |
|
sandwich_start_index = config.num_hidden_layers // 2 - config.sandwich_size |
|
sandwich_indices = [sandwich_start_index + i*2 + 1 for i in range(config.sandwich_size)] |
|
|
|
self.layers = nn.ModuleList([ |
|
TransformerBlock(config, bias=i in sandwich_indices) for i in range(config.num_hidden_layers)]) |
|
for i in range(config.sandwich_size): |
|
self.layers[sandwich_start_index + i*2+1].make_sandwich(self.layers[sandwich_start_index + i*2]) |
|
tied_weights_keys = [ |
|
'q.weight', |
|
'k.weight', |
|
'v.weight', |
|
'att_proj_linear.weight', |
|
'ff_linear_1.weight', |
|
'ff_linear_2.weight', |
|
'ff_linear_3.weight', |
|
] |
|
for key in tied_weights_keys: |
|
self._dynamic_tied_weights_keys.append(f'layers.{sandwich_start_index + i*2}.{key}') |
|
else: |
|
self.layers = nn.ModuleList([TransformerBlock(config) for _ in range(config.num_hidden_layers)]) |
|
|
|
def _get_attention_mask(self, attn_mask, dtype): |
|
if attn_mask.dim() <= 2: |
|
extended_mask = attn_mask.unsqueeze(1).unsqueeze(2) |
|
extended_mask = extended_mask*extended_mask.squeeze(-2).unsqueeze(-1) |
|
elif attn_mask.dim() == 3: |
|
extended_mask = attn_mask.unsqueeze(1) |
|
else: |
|
extended_mask = attn_mask |
|
|
|
|
|
min_dtype = torch.finfo(dtype).min |
|
extended_mask = ((1.0 - extended_mask.float()) * min_dtype) |
|
|
|
|
|
extended_mask = extended_mask.mul(~torch.all(extended_mask==min_dtype, dim=-1, keepdim=True)) |
|
|
|
return extended_mask |
|
|
|
def forward(self, hidden_states, attention_mask, freqs_cos, freqs_sin, return_dict=True, output_hidden_states=False): |
|
all_hidden_states = [] |
|
attn_mask = self._get_attention_mask(attention_mask, hidden_states.dtype) |
|
for i, layer in enumerate(self.layers): |
|
hidden_states = layer(hidden_states, attn_mask, freqs_cos, freqs_sin) |
|
|
|
all_hidden_states.append(hidden_states) |
|
|
|
if return_dict: |
|
return BaseModelOutput( |
|
last_hidden_state=all_hidden_states[-1], |
|
hidden_states=all_hidden_states if output_hidden_states else None, |
|
attentions=None, |
|
) |
|
else: |
|
return (all_hidden_states[-1], all_hidden_states) if output_hidden_states else all_hidden_states |
|
|
|
|
|
class HLMPreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = HLMConfig |
|
base_model_prefix = "hlm" |
|
_keys_to_ignore_on_load_unexpected = [] |
|
supports_gradient_checkpointing = True |
|
_supports_param_buffer_assignment = False |
|
|
|
def _init_weights(self, module): |
|
"""Initialize the weights.""" |
|
if isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
|
|
class HLMModel(HLMPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.config = config |
|
|
|
self.char_embeddings = nn.Embedding(config.vocab_size, config.intra_word_encoder.hidden_size, padding_idx=0) |
|
self.char_embedding_dropout = nn.Dropout(config.intra_word_encoder.dropout_prob) |
|
|
|
if self.config.embedding_size != -1 and self.config.embedding_size != self.config.intra_word_encoder.hidden_size: |
|
self.char_embedding_project = nn.Linear(self.config.embedding_size, self.config.intra_word_encoder.hidden_size, bias=False) |
|
|
|
freqs_cos, freqs_sin = precompute_freqs_cis(config.intra_word_encoder.hidden_size // config.intra_word_encoder.num_attention_heads, config.max_seq_length) |
|
self.register_buffer("freqs_cos", freqs_cos) |
|
self.register_buffer("freqs_sin", freqs_sin) |
|
|
|
self.word_type_embeddings = nn.Embedding(config.type_vocab_size, config.intra_word_encoder.hidden_size) |
|
|
|
self.intra_word_encoder = HLMEncoder(config.intra_word_encoder) |
|
if self.config.intra_word_encoder.hidden_size != self.config.inter_word_encoder.hidden_size: |
|
self.intra_word_project = nn.Linear(self.config.intra_word_encoder.hidden_size, self.config.inter_word_encoder.hidden_size, bias=False) |
|
|
|
self.inter_word_encoder = HLMEncoder(config.inter_word_encoder) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.char_embeddings |
|
|
|
def set_input_embeddings(self, new_embeddings): |
|
self.char_embeddings = new_embeddings |
|
|
|
def forward(self, input_ids, char_input_mask, word_input_mask, word_type_ids=None, combined_word_embeddings: Optional[bool]=False, output_hidden_states: Optional[bool]=False, return_dict: Optional[bool]=True): |
|
input_embeds = self.char_embeddings(input_ids) |
|
input_embeds = self.char_embedding_dropout(input_embeds) |
|
|
|
if hasattr(self, "char_embedding_project"): |
|
input_embeds = self.char_embedding_project(input_embeds) |
|
|
|
batch_size, num_word, _, _ = input_embeds.shape |
|
num_char = self.config.max_word_length |
|
|
|
|
|
input_embeds = input_embeds.view(batch_size * num_word, num_char, self.config.intra_word_encoder.hidden_size) |
|
intra_word_mask = char_input_mask.view(batch_size * num_word, num_char) |
|
intra_word_output = self.intra_word_encoder( |
|
input_embeds, |
|
intra_word_mask, |
|
self.freqs_cos[:num_char], |
|
self.freqs_sin[:num_char], |
|
output_hidden_states=False, |
|
return_dict=True, |
|
) |
|
initial_embeds = intra_word_output.last_hidden_state |
|
|
|
|
|
initial_word_embeds = initial_embeds[:,0,:] |
|
|
|
if word_type_ids is not None: |
|
word_type_embeds = self.word_type_embeddings(word_type_ids) |
|
word_type_embeds = word_type_embeds.view(batch_size * num_word, self.config.intra_word_encoder.hidden_size) |
|
initial_word_embeds = initial_word_embeds + word_type_embeds |
|
|
|
if hasattr(self, "intra_word_project"): |
|
initial_embeds = self.intra_word_project(initial_embeds) |
|
|
|
|
|
word_embeds = initial_word_embeds.view(batch_size, num_word, self.config.inter_word_encoder.hidden_size) |
|
inter_word_output = self.inter_word_encoder( |
|
word_embeds, |
|
word_input_mask, |
|
self.freqs_cos[:num_word], |
|
self.freqs_sin[:num_word], |
|
output_hidden_states=output_hidden_states, |
|
return_dict=True, |
|
) |
|
|
|
if combined_word_embeddings: |
|
initial_word_embeds = initial_word_embeds.view(batch_size, num_word, self.config.inter_word_encoder.hidden_size) |
|
contextual_word_embeds = inter_word_output.last_hidden_state |
|
combined_word_embeds = torch.cat([initial_word_embeds, contextual_word_embeds], dim=2) |
|
last_hidden_state = combined_word_embeds |
|
else: |
|
last_hidden_state = inter_word_output.last_hidden_state |
|
|
|
if return_dict: |
|
return HLMBaseModelOutput( |
|
last_hidden_state=last_hidden_state, |
|
hidden_states=inter_word_output.hidden_states if output_hidden_states else None, |
|
initial_embeds=initial_embeds, |
|
initial_word_embeds=initial_word_embeds, |
|
intra_word_mask=intra_word_mask, |
|
char_embeds=input_embeds, |
|
input_shape=(batch_size, num_word, num_char, self.config.inter_word_encoder.hidden_size), |
|
) |
|
else: |
|
return ( |
|
last_hidden_state, |
|
inter_word_output.hidden_states if output_hidden_states else None, |
|
initial_embeds, |
|
initial_word_embeds, |
|
intra_word_mask, |
|
input_embeds, |
|
(batch_size, num_word, num_char, self.config.inter_word_encoder.hidden_size), |
|
) |
|
|
|
|
|
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor): |
|
ndim = x.ndim |
|
assert 0 <= 1 < ndim |
|
assert freqs_cis.shape == (x.shape[1], x.shape[-1]) |
|
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)] |
|
return freqs_cis.view(*shape) |
|
|
|
|
|
def apply_rotary_emb(xq: torch.Tensor, xk: torch.Tensor, freqs_cos: torch.Tensor, freqs_sin: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: |
|
|
|
xq_r, xq_i = xq.float().reshape(*xq.shape[:-1], -1, 2).unbind(-1) |
|
xk_r, xk_i = xk.float().reshape(*xk.shape[:-1], -1, 2).unbind(-1) |
|
|
|
|
|
freqs_cos = reshape_for_broadcast(freqs_cos, xq_r) |
|
freqs_sin = reshape_for_broadcast(freqs_sin, xq_r) |
|
|
|
|
|
xq_out_r = xq_r * freqs_cos - xq_i * freqs_sin |
|
xq_out_i = xq_r * freqs_sin + xq_i * freqs_cos |
|
xk_out_r = xk_r * freqs_cos - xk_i * freqs_sin |
|
xk_out_i = xk_r * freqs_sin + xk_i * freqs_cos |
|
|
|
|
|
xq_out = torch.stack([xq_out_r, xq_out_i], dim=-1).flatten(3) |
|
xk_out = torch.stack([xk_out_r, xk_out_i], dim=-1).flatten(3) |
|
|
|
return xq_out.type_as(xq), xk_out.type_as(xk) |
|
|
|
|
|
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0): |
|
freqs = 1.0 / ( |
|
theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim) |
|
) |
|
t = torch.arange(end, device=freqs.device) |
|
freqs = torch.outer(t, freqs).float() |
|
freqs_cos = torch.cos(freqs) |
|
freqs_sin = torch.sin(freqs) |
|
return freqs_cos, freqs_sin |
|
|
|
|
|
class RMSNorm(torch.nn.Module): |
|
def __init__(self, dim: int, eps: float = 1e-6): |
|
super().__init__() |
|
self.eps = eps |
|
self.weight = nn.Parameter(torch.ones(dim)) |
|
|
|
def _norm(self, x): |
|
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) |
|
|
|
def forward(self, x): |
|
output = self._norm(x.float()).type_as(x) |
|
return output * self.weight |
|
|
|
|
|
class TransformerBlock(nn.Module): |
|
def __init__(self, config: HLMEncoderConfig, bias: bool = False): |
|
super().__init__() |
|
|
|
self.pad_id = config.pad_token_id |
|
self.drop_p = config.dropout_prob |
|
self.n_heads = config.num_attention_heads |
|
self.d_head = config.hidden_size // config.num_attention_heads |
|
self.has_bias = bias |
|
dim = config.hidden_size |
|
|
|
|
|
self.q = nn.Linear(in_features=dim, out_features=dim, bias=bias) |
|
self.k = nn.Linear(in_features=dim, out_features=dim, bias=bias) |
|
self.v = nn.Linear(in_features=dim, out_features=dim, bias=bias) |
|
self.att_proj_linear = nn.Linear(in_features=dim, out_features=dim, bias=bias) |
|
self.resid_dropout = nn.Dropout(self.drop_p) |
|
|
|
|
|
self.ff_dropout = nn.Dropout(self.drop_p) |
|
self.ff_linear_1 = nn.Linear(in_features=dim, out_features=config.intermediate_size, bias=bias) |
|
self.ff_linear_2 = nn.Linear(in_features=config.intermediate_size, out_features=dim, bias=bias) |
|
self.ff_linear_3 = nn.Linear(in_features=dim, out_features=config.intermediate_size, bias=bias) |
|
|
|
|
|
self.attn_norm = RMSNorm(dim, eps=config.layer_norm_eps) |
|
self.ff_norm = RMSNorm(dim, eps=config.layer_norm_eps) |
|
|
|
def make_sandwich(self, other): |
|
assert self.has_bias |
|
assert not other.has_bias |
|
|
|
|
|
|
|
self.q.weight = other.q.weight |
|
self.k.weight = other.k.weight |
|
self.v.weight = other.v.weight |
|
self.att_proj_linear.weight = other.att_proj_linear.weight |
|
self.ff_linear_1.weight = other.ff_linear_1.weight |
|
self.ff_linear_2.weight = other.ff_linear_2.weight |
|
self.ff_linear_3.weight = other.ff_linear_3.weight |
|
|
|
def forward(self, x: torch.Tensor, pad_mask: torch.Tensor, freqs_cos: torch.Tensor, freqs_sin: torch.Tensor): |
|
x = x + self._attention_block(self.attn_norm(x), pad_mask, freqs_cos, freqs_sin) |
|
x = x + self._feedforward_block(self.ff_norm(x)) |
|
return x |
|
|
|
def _attention_block(self, x: torch.Tensor, attn_mask: torch.Tensor, freqs_cos: torch.Tensor, freqs_sin: torch.Tensor): |
|
batch_size, seq_len, _ = x.shape |
|
xq, xk, xv = self.q(x), self.k(x), self.v(x) |
|
|
|
|
|
xq = xq.view(batch_size, seq_len, self.n_heads, self.d_head) |
|
xk = xk.view(batch_size, seq_len, self.n_heads, self.d_head) |
|
xv = xv.view(batch_size, seq_len, self.n_heads, self.d_head) |
|
xq, xk = apply_rotary_emb(xq, xk, freqs_cos, freqs_sin) |
|
|
|
|
|
xq = xq.transpose(1, 2) |
|
xk = xk.transpose(1, 2) |
|
xv = xv.transpose(1, 2) |
|
|
|
att = F.scaled_dot_product_attention( |
|
query=xq, key=xk, value=xv, |
|
attn_mask=attn_mask, |
|
dropout_p=self.drop_p if self.training else 0.0, |
|
is_causal=False, |
|
) |
|
|
|
|
|
out = att.transpose(1, 2).contiguous() |
|
out = out.view(batch_size, seq_len, self.n_heads * self.d_head) |
|
|
|
return self.resid_dropout(self.att_proj_linear(out)) |
|
|
|
def _feedforward_block(self, x: torch.Tensor): |
|
|
|
x = self.ff_linear_2(F.silu(self.ff_linear_1(x)) * self.ff_linear_3(x)) |
|
x = self.ff_dropout(x) |
|
return x |
|
|
|
|
|
class HLMForMaskedLM(HLMPreTrainedModel): |
|
_tied_weights_keys = ["cls.decoder.weight", "cls.decoder.bias"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
|
|
self.hlm = HLMModel(config) |
|
self.cls = HLMLMPredictionHead(config) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_output_embeddings(self): |
|
return self.cls.decoder |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.cls.decoder = new_embeddings |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
char_input_mask: Optional[torch.Tensor] = None, |
|
word_input_mask: Optional[torch.Tensor] = None, |
|
word_type_ids: Optional[torch.Tensor] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = True, |
|
) -> Union[Tuple, MaskedLMOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size, num_words, max_chars_per_word)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., |
|
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the |
|
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` |
|
""" |
|
|
|
outputs = self.hlm( |
|
input_ids, |
|
char_input_mask=char_input_mask, |
|
word_input_mask=word_input_mask, |
|
word_type_ids=word_type_ids, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
combined_word_embeddings=False, |
|
) |
|
|
|
prediction_scores = self.cls(outputs, |
|
freqs_cos=self.hlm.freqs_cos[:self.config.max_word_length], |
|
freqs_sin=self.hlm.freqs_sin[:self.config.max_word_length]) |
|
|
|
masked_lm_loss = None |
|
if labels is not None: |
|
loss_fct = nn.CrossEntropyLoss() |
|
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = (prediction_scores,) + outputs[1:] |
|
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output |
|
else: |
|
return MaskedLMOutput( |
|
loss=masked_lm_loss, |
|
logits=prediction_scores, |
|
hidden_states=outputs.hidden_states, |
|
) |
|
|
|
|
|
class HLMLMPredictionHead(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
|
|
intra_word_encoder_config = copy.copy(config.intra_word_encoder) |
|
intra_word_encoder_config.num_hidden_layers = 1 |
|
intra_word_encoder_config.sandwich_size = 0 |
|
self.intra_word_encoder = HLMEncoder(intra_word_encoder_config) |
|
self.residual_word_embedding = getattr(config, 'residual_word_embedding', False) |
|
self.config = config |
|
|
|
if self.config.intra_word_encoder.hidden_size != self.config.inter_word_encoder.hidden_size: |
|
self.inter_word_project = nn.Linear(config.inter_word_encoder.hidden_size, self.config.intra_word_encoder.hidden_size, bias=False) |
|
|
|
if getattr(config, "tie_word_embeddings", True): |
|
|
|
|
|
self.decoder = nn.Linear(config.intra_word_encoder.hidden_size, config.vocab_size, bias=False) |
|
self.bias = nn.Parameter(torch.zeros(config.vocab_size)) |
|
|
|
self.decoder.bias = self.bias |
|
else: |
|
self.decoder = nn.Linear(config.intra_word_encoder.hidden_size, config.vocab_size) |
|
|
|
def forward(self, base_model_output: HLMBaseModelOutput, freqs_cos: torch.Tensor, freqs_sin: torch.Tensor): |
|
batch_size, num_word, _, _ = base_model_output.input_shape |
|
|
|
word_embeds = base_model_output.last_hidden_state.reshape(batch_size * num_word, 1, self.config.inter_word_encoder.hidden_size) |
|
|
|
if self.residual_word_embedding: |
|
|
|
word_embeds += base_model_output.initial_word_embeds.unsqueeze(1) |
|
|
|
if hasattr(self, "inter_word_project"): |
|
word_embeds = self.inter_word_project(word_embeds) |
|
|
|
|
|
char_embeds = torch.cat([word_embeds, base_model_output.initial_embeds[:,1:,:]], dim=1) |
|
|
|
intra_word_output = self.intra_word_encoder( |
|
char_embeds, |
|
base_model_output.intra_word_mask, |
|
freqs_cos, freqs_sin, |
|
output_hidden_states=False, |
|
return_dict=True, |
|
) |
|
|
|
char_logits = self.decoder(intra_word_output.last_hidden_state) |
|
batch_size, num_word, num_char, _ = base_model_output.input_shape |
|
char_logits = char_logits.reshape(batch_size, num_word * num_char, -1) |
|
return char_logits |
|
|
|
|
|
class HLMForTokenClassification(HLMPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
|
|
self.hlm = HLMModel(config) |
|
self.cls = nn.Linear(config.inter_word_encoder.hidden_size*2, config.num_labels) |
|
|
|
|
|
self.post_init() |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
char_input_mask: Optional[torch.Tensor] = None, |
|
word_input_mask: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, TokenClassifierOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.hlm( |
|
input_ids, |
|
char_input_mask=char_input_mask, |
|
word_input_mask=word_input_mask, |
|
output_hidden_states=output_hidden_states, |
|
combined_word_embeddings=True, |
|
) |
|
|
|
logits = self.cls(outputs.last_hidden_state) |
|
|
|
loss = None |
|
if labels is not None: |
|
loss_fct = nn.CrossEntropyLoss() |
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return TokenClassifierOutput( |
|
loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions |
|
) |
|
|
|
|
|
class HLMForSequenceClassification(HLMPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.config = config |
|
self.num_labels = getattr(config, 'num_labels', 2) |
|
self.hlm = HLMModel(config) |
|
|
|
self.dense = nn.Linear(config.inter_word_encoder.hidden_size, config.inter_word_encoder.hidden_size) |
|
self.dropout = nn.Dropout(0.1) |
|
self.classifier = nn.Linear(config.inter_word_encoder.hidden_size, config.num_labels) |
|
|
|
self.activation = nn.GELU() |
|
|
|
|
|
self.post_init() |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
char_input_mask: Optional[torch.Tensor] = None, |
|
word_input_mask: Optional[torch.Tensor] = None, |
|
word_type_ids: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, SequenceClassifierOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.hlm( |
|
input_ids, |
|
char_input_mask=char_input_mask, |
|
word_input_mask=word_input_mask, |
|
word_type_ids=word_type_ids, |
|
output_hidden_states=output_hidden_states, |
|
combined_word_embeddings=False, |
|
) |
|
|
|
emb = outputs.last_hidden_state[:, 0] |
|
emb = self.dense(emb) |
|
emb = self.activation(emb) |
|
emb = self.dropout(emb) |
|
logits = self.classifier(emb) |
|
|
|
loss = None |
|
if labels is not None: |
|
if self.config.problem_type is None: |
|
if self.num_labels == 1: |
|
|
|
loss_fn = nn.MSELoss() |
|
logits = logits.view(-1).to(labels.dtype) |
|
loss = loss_fn(logits, labels.view(-1)) |
|
elif labels.dim() == 1 or labels.size(-1) == 1: |
|
label_index = (labels >= 0).nonzero() |
|
labels = labels.long() |
|
if label_index.size(0) > 0: |
|
labeled_logits = torch.gather( |
|
logits, 0, label_index.expand(label_index.size(0), logits.size(1)) |
|
) |
|
labels = torch.gather(labels, 0, label_index.view(-1)) |
|
loss_fct = nn.CrossEntropyLoss() |
|
loss = loss_fct(labeled_logits.view(-1, self.num_labels).float(), labels.view(-1)) |
|
else: |
|
loss = torch.tensor(0).to(logits) |
|
else: |
|
log_softmax = nn.LogSoftmax(-1) |
|
loss = -((log_softmax(logits) * labels).sum(-1)).mean() |
|
elif self.config.problem_type == "regression": |
|
loss_fct = nn.MSELoss() |
|
if self.num_labels == 1: |
|
loss = loss_fct(logits.squeeze(), labels.squeeze()) |
|
else: |
|
loss = loss_fct(logits, labels) |
|
elif self.config.problem_type == "single_label_classification": |
|
loss_fct = nn.CrossEntropyLoss() |
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) |
|
elif self.config.problem_type == "multi_label_classification": |
|
loss_fct = nn.BCEWithLogitsLoss() |
|
loss = loss_fct(logits, labels) |
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return SequenceClassifierOutput( |
|
loss=loss, logits=logits, hidden_states=outputs.hidden_states) |
|
|
|
|
|
AutoConfig.register("hlm", HLMConfig) |
|
AutoModel.register(HLMConfig, HLMModel) |
|
AutoModelForTokenClassification.register(HLMConfig, HLMForTokenClassification) |
|
AutoModelForSequenceClassification.register(HLMConfig, HLMForSequenceClassification) |
|
AutoModelForMaskedLM.register(HLMConfig, HLMForMaskedLM) |
|
AutoTokenizer.register(HLMConfig, HLMTokenizer) |
|
HLMConfig.register_for_auto_class() |
|
HLMModel.register_for_auto_class("AutoModel") |
|
HLMForMaskedLM.register_for_auto_class("AutoModelForMaskedLM") |
|
HLMForSequenceClassification.register_for_auto_class("AutoModelForSequenceClassification") |
|
HLMForTokenClassification.register_for_auto_class("AutoModelForTokenClassification") |