File size: 15,789 Bytes
d6cd530
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partial
from typing import Generator, Optional
import json
import onnxruntime
import torch
import numpy as np
import whisper
from typing import Callable
import torchaudio.compliance.kaldi as kaldi
import torchaudio
import os
import re
import inflect
from pydantic import BaseModel, ConfigDict

try:
    import ttsfrd
    use_ttsfrd = True
except ImportError:
    print("failed to import ttsfrd, use WeTextProcessing instead")
    from tn.chinese.normalizer import Normalizer as ZhNormalizer
    from tn.english.normalizer import Normalizer as EnNormalizer
    use_ttsfrd = False
from cosyvoice.utils.file_utils import logging
from cosyvoice.utils.frontend_utils import contains_chinese, replace_blank, replace_corner_mark, remove_bracket, spell_out_number, split_paragraph, is_only_punctuation


class SpeakerInfo(BaseModel):
    model_config = ConfigDict(arbitrary_types_allowed=True)

    name: Optional[str] = None
    spk_id: str
    prompt_text: str
    prompt_text_token: torch.Tensor
    speech_feat: torch.Tensor
    speech_token: torch.Tensor
    embedding: torch.Tensor


class CosyVoiceFrontEnd:

    def __init__(self,
                 get_tokenizer: Callable,
                 feat_extractor: Callable,
                 campplus_model: str,
                 speech_tokenizer_model: str,
                 spk2info: str = '',
                 allowed_special: str = 'all'):
        self.tokenizer = get_tokenizer()
        self.feat_extractor = feat_extractor
        self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        option = onnxruntime.SessionOptions()
        option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
        option.intra_op_num_threads = 1
        self.campplus_session = onnxruntime.InferenceSession(campplus_model, sess_options=option, providers=["CPUExecutionProvider"])
        self.speech_tokenizer_session = onnxruntime.InferenceSession(speech_tokenizer_model, sess_options=option,
                                                                     providers=["CUDAExecutionProvider" if torch.cuda.is_available() else
                                                                                "CPUExecutionProvider"])
        self.spk2info_path = spk2info
        if os.path.exists(spk2info):
            self.spk2info = torch.load(spk2info, map_location=self.device, weights_only=False)
        else:
            self.spk2info = {}
        self.allowed_special = allowed_special
        self.use_ttsfrd = use_ttsfrd
        if self.use_ttsfrd:
            self.frd = ttsfrd.TtsFrontendEngine()
            ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
            assert self.frd.initialize('{}/../../pretrained_models/CosyVoice-ttsfrd/resource'.format(ROOT_DIR)) is True, \
                'failed to initialize ttsfrd resource'
            self.frd.set_lang_type('pinyinvg')
        else:
            # self.zh_tn_model = ZhNormalizer(remove_erhua=False, full_to_half=False, overwrite_cache=True)
            self.zh_tn_model = ZhNormalizer(remove_erhua=False, full_to_half=False, overwrite_cache=False)
            self.en_tn_model = EnNormalizer()
            self.inflect_parser = inflect.engine()

    def _extract_text_token(self, text):
        if isinstance(text, Generator):
            logging.info('get tts_text generator, will return _extract_text_token_generator!')
            # NOTE add a dummy text_token_len for compatibility
            return self._extract_text_token_generator(text), torch.tensor([0], dtype=torch.int32).to(self.device)
        else:
            text_token = self.tokenizer.encode(text, allowed_special=self.allowed_special)
            text_token = torch.tensor([text_token], dtype=torch.int32).to(self.device)
            text_token_len = torch.tensor([text_token.shape[1]], dtype=torch.int32).to(self.device)
            return text_token, text_token_len

    def _extract_text_token_generator(self, text_generator):
        for text in text_generator:
            text_token, _ = self._extract_text_token(text)
            for i in range(text_token.shape[1]):
                yield text_token[:, i: i + 1]

    def _extract_speech_token(self, speech):
        assert speech.shape[1] / 16000 <= 30, 'do not support extract speech token for audio longer than 30s'
        feat = whisper.log_mel_spectrogram(speech, n_mels=128)
        speech_token = self.speech_tokenizer_session.run(None,
                                                         {self.speech_tokenizer_session.get_inputs()[0].name:
                                                          feat.detach().cpu().numpy(),
                                                          self.speech_tokenizer_session.get_inputs()[1].name:
                                                          np.array([feat.shape[2]], dtype=np.int32)})[0].flatten().tolist()
        speech_token = torch.tensor([speech_token], dtype=torch.int32).to(self.device)
        speech_token_len = torch.tensor([speech_token.shape[1]], dtype=torch.int32).to(self.device)
        return speech_token, speech_token_len

    def _extract_spk_embedding(self, speech):
        feat = kaldi.fbank(speech,
                           num_mel_bins=80,
                           dither=0,
                           sample_frequency=16000)
        feat = feat - feat.mean(dim=0, keepdim=True)
        embedding = self.campplus_session.run(None,
                                              {self.campplus_session.get_inputs()[0].name: feat.unsqueeze(dim=0).cpu().numpy()})[0].flatten().tolist()
        embedding = torch.tensor([embedding]).to(self.device)
        return embedding

    def _extract_speech_feat(self, speech):
        speech_feat = self.feat_extractor(speech).squeeze(dim=0).transpose(0, 1).to(self.device)
        speech_feat = speech_feat.unsqueeze(dim=0)
        speech_feat_len = torch.tensor([speech_feat.shape[1]], dtype=torch.int32).to(self.device)
        return speech_feat, speech_feat_len

    def text_normalize(self, text, split=True, text_frontend=True):
        if isinstance(text, Generator):
            logging.info('get tts_text generator, will skip text_normalize!')
            return [text]
        if text_frontend is False:
            return [text] if split is True else text
        text = text.strip()
        if self.use_ttsfrd:
            texts = [i["text"] for i in json.loads(self.frd.do_voicegen_frd(text))["sentences"]]
            text = ''.join(texts)
        else:
            if contains_chinese(text):
                text = self.zh_tn_model.normalize(text)
                text = text.replace("\n", "")
                text = replace_blank(text)
                text = replace_corner_mark(text)
                text = text.replace(".", "。")
                text = text.replace(" - ", ",")
                text = remove_bracket(text)
                text = re.sub(r'[,,、]+$', '。', text)
                if not split:
                    return text
                texts = list(split_paragraph(text, partial(self.tokenizer.encode, allowed_special=self.allowed_special), "zh", token_max_n=80,
                                             token_min_n=60, merge_len=20, comma_split=False))
            else:
                text = self.en_tn_model.normalize(text)
                text = spell_out_number(text, self.inflect_parser)
                if not split:
                    return text
                texts = list(split_paragraph(text, partial(self.tokenizer.encode, allowed_special=self.allowed_special), "en", token_max_n=80,
                                             token_min_n=60, merge_len=20, comma_split=False))
        texts = [i for i in texts if not is_only_punctuation(i)]
        return texts if split is True else text

    def frontend_sft(self, tts_text, spk_id):
        tts_text_token, tts_text_token_len = self._extract_text_token(tts_text)
        embedding = self.spk2info[spk_id]['embedding']
        assert embedding is not None
        model_input = {'text': tts_text_token, 'text_len': tts_text_token_len, 'llm_embedding': embedding, 'flow_embedding': embedding}
        return model_input

    def frontend_zero_shot(self, tts_text, prompt_text, prompt_speech_16k, resample_rate):
        tts_text_token, tts_text_token_len = self._extract_text_token(tts_text)
        prompt_text_token, prompt_text_token_len = self._extract_text_token(prompt_text)
        prompt_speech_resample = torchaudio.transforms.Resample(orig_freq=16000, new_freq=resample_rate)(prompt_speech_16k)
        speech_feat, speech_feat_len = self._extract_speech_feat(prompt_speech_resample)
        speech_token, speech_token_len = self._extract_speech_token(prompt_speech_16k)
        if resample_rate == 24000:
            # cosyvoice2, force speech_feat % speech_token = 2
            token_len = min(int(speech_feat.shape[1] / 2), speech_token.shape[1])
            speech_feat, speech_feat_len[:] = speech_feat[:, :2 * token_len], 2 * token_len
            speech_token, speech_token_len[:] = speech_token[:, :token_len], token_len
        embedding = self._extract_spk_embedding(prompt_speech_16k)
        model_input = {'text': tts_text_token, 'text_len': tts_text_token_len,
                       'prompt_text': prompt_text_token, 'prompt_text_len': prompt_text_token_len,
                       'llm_prompt_speech_token': speech_token, 'llm_prompt_speech_token_len': speech_token_len,
                       'flow_prompt_speech_token': speech_token, 'flow_prompt_speech_token_len': speech_token_len,
                       'prompt_speech_feat': speech_feat, 'prompt_speech_feat_len': speech_feat_len,
                       'llm_embedding': embedding, 'flow_embedding': embedding}
        return model_input

    def frontend_cross_lingual(self, tts_text, prompt_speech_16k, resample_rate):
        model_input = self.frontend_zero_shot(tts_text, '', prompt_speech_16k, resample_rate)
        # in cross lingual mode, we remove prompt in llm
        del model_input['prompt_text']
        del model_input['prompt_text_len']
        del model_input['llm_prompt_speech_token']
        del model_input['llm_prompt_speech_token_len']
        return model_input

    def frontend_instruct(self, tts_text, spk_id, instruct_text):
        model_input = self.frontend_sft(tts_text, spk_id)
        # in instruct mode, we remove spk_embedding in llm due to information leakage
        del model_input['llm_embedding']
        instruct_text_token, instruct_text_token_len = self._extract_text_token(instruct_text + '<endofprompt>')
        model_input['prompt_text'] = instruct_text_token
        model_input['prompt_text_len'] = instruct_text_token_len
        return model_input

    def frontend_instruct2(self, tts_text, instruct_text, prompt_speech_16k, resample_rate):
        model_input = self.frontend_zero_shot(tts_text, instruct_text + '<|endofprompt|>', prompt_speech_16k, resample_rate)
        del model_input['llm_prompt_speech_token']
        del model_input['llm_prompt_speech_token_len']
        return model_input

    def frontend_vc(self, source_speech_16k, prompt_speech_16k, resample_rate):
        prompt_speech_token, prompt_speech_token_len = self._extract_speech_token(prompt_speech_16k)
        prompt_speech_resample = torchaudio.transforms.Resample(orig_freq=16000, new_freq=resample_rate)(prompt_speech_16k)
        prompt_speech_feat, prompt_speech_feat_len = self._extract_speech_feat(prompt_speech_resample)
        embedding = self._extract_spk_embedding(prompt_speech_16k)
        source_speech_token, source_speech_token_len = self._extract_speech_token(source_speech_16k)
        model_input = {'source_speech_token': source_speech_token, 'source_speech_token_len': source_speech_token_len,
                       'flow_prompt_speech_token': prompt_speech_token, 'flow_prompt_speech_token_len': prompt_speech_token_len,
                       'prompt_speech_feat': prompt_speech_feat, 'prompt_speech_feat_len': prompt_speech_feat_len,
                       'flow_embedding': embedding}
        return model_input

    def generate_spk_info(self, spk_id: str, prompt_text: str, prompt_speech_16k: torch.Tensor, resample_rate:int=24000, name: str=None):
        assert isinstance(spk_id, str)
        assert spk_id not in self.spk2info, "spk_id already exists"
        prompt_text_token, _ = self._extract_text_token(prompt_text)
        prompt_speech_resample = torchaudio.transforms.Resample(orig_freq=16000, new_freq=resample_rate)(prompt_speech_16k)
        speech_feat, _ = self._extract_speech_feat(prompt_speech_resample)
        speech_token, speech_token_len = self._extract_speech_token(prompt_speech_16k)
        if resample_rate == 24000:
            # cosyvoice2, force speech_feat % speech_token = 2
            token_len = min(int(speech_feat.shape[1] / 2), speech_token.shape[1])
            speech_feat = speech_feat[:, :2 * token_len]
            speech_token = speech_token[:, :token_len]
        embedding = self._extract_spk_embedding(prompt_speech_16k)
        spk_info = SpeakerInfo(
            name=name,
            spk_id=spk_id,
            prompt_text=prompt_text,
            prompt_text_token=prompt_text_token,
            speech_feat=speech_feat,
            speech_token=speech_token,
            embedding=embedding,
        )
        self.add_spk_info(spk_id, spk_info)

    def add_spk_info(self, spk_id: str, spk_info: dict|SpeakerInfo):
        if isinstance(spk_info, BaseModel):
            spk_info = spk_info.model_dump()
        self.spk2info[spk_id] = spk_info
        if self.spk2info_path:
            torch.save(self.spk2info, self.spk2info_path)

    def frontend_instruct2_by_spk_id(self, tts_text, instruct_text, spk_id):
        assert spk_id in self.spk2info
        tts_text_token, _ = self._extract_text_token(tts_text)
        prompt_text_token, _ = self._extract_text_token(instruct_text + '<|endofprompt|>')
        model_input = {'text': tts_text_token,
                       'prompt_text': prompt_text_token,
                       'flow_prompt_speech_token': self.spk2info[spk_id]['speech_token'],
                       'prompt_speech_feat': self.spk2info[spk_id]['speech_feat'],
                       'llm_embedding': self.spk2info[spk_id]['embedding'],
                       'flow_embedding': self.spk2info[spk_id]['embedding'],
        }
        return model_input

    def frontend_zero_shot_by_spk_id(self, tts_text, spk_id):
        assert spk_id in self.spk2info
        tts_text_token, _ = self._extract_text_token(tts_text)
        model_input = {'text': tts_text_token,
                       'prompt_text': self.spk2info[spk_id]['prompt_text_token'],
                       'llm_prompt_speech_token': self.spk2info[spk_id]['speech_token'],
                       'flow_prompt_speech_token': self.spk2info[spk_id]['speech_token'],
                       'prompt_speech_feat': self.spk2info[spk_id]['speech_feat'],
                       'llm_embedding': self.spk2info[spk_id]['embedding'],
                       'flow_embedding': self.spk2info[spk_id]['embedding']
        }
        return model_input