File size: 10,357 Bytes
d6cd530
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
# SPDX-License-Identifier: Apache-2.0

# Adapted from
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/qwen2/modeling_qwen2.py
# Copyright 2024 The Qwen team.
# Copyright 2023 The vLLM team.
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only Qwen2 model compatible with HuggingFace weights."""
from typing import Iterable, List, Optional, Set, Tuple, Union, Iterator, overload, TypedDict, Mapping, Any
from typing_extensions import TypeVar

import torch
from torch import nn

from vllm.attention import AttentionMetadata
from vllm.config import VllmConfig
from vllm.logger import init_logger
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler
from vllm.model_executor.layers.vocab_parallel_embedding import ParallelLMHead
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.sequence import IntermediateTensors

from vllm.model_executor.models.interfaces import T
from vllm.model_executor.models.qwen2 import Qwen2Model

from vllm.model_executor.models.utils import AutoWeightsLoader, maybe_prefix, merge_multimodal_embeddings

logger = init_logger(__name__)

IGNORE_ID = -1


class CosyVoice2Model(nn.Module):

    packed_modules_mapping = {
        "qkv_proj": [
            "q_proj",
            "k_proj",
            "v_proj",
        ],
        "gate_up_proj": [
            "gate_proj",
            "up_proj",
        ],
    }

    def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
        super().__init__()
        config = vllm_config.model_config.hf_config
        quant_config = vllm_config.quant_config
        lora_config = vllm_config.lora_config

        self.config = config
        self.lora_config = lora_config
        self.quant_config = quant_config

        self.llm_input_size = 896
        self.llm_output_size = 896

        self.speech_token_size = 6561+3
        self.llm_token_size = config.vocab_size

        # 2. build speech token language model related modules
        self.sos_eos = 0
        self.task_id = 1
        self.fill_token = 2


        self.allow_patterns_overrides = ["llm.*"]
        self.llm_embedding = torch.nn.Embedding(2, self.llm_input_size)
        self.model = Qwen2Model(vllm_config=vllm_config,
                              prefix=maybe_prefix(prefix, "model"))

        # self.llm_decoder = nn.Linear(self.llm_output_size, self.speech_token_size)
        self.llm_decoder = ParallelLMHead(self.speech_token_size,
                                      self.llm_output_size,
                                      bias=True,
                                      quant_config=quant_config,
                                      prefix=maybe_prefix(
                                          prefix, "llm_decoder"))
        self.logits_processor = LogitsProcessor(self.speech_token_size)

        # length_normalized_loss: bool = True,
        # lsm_weight: float = 0.0,
        # self.criterion_ce = LabelSmoothingLoss(
        #     size=self.speech_token_size,
        #     padding_idx=IGNORE_ID,
        #     smoothing=lsm_weight,
        #     normalize_length=length_normalized_loss,
        # )

        # 3. [Optional] build speech token related modules
        self.speech_embedding = torch.nn.Embedding(self.speech_token_size, self.llm_input_size)

        # 4. sampling method
        ## use vllm sampling method
        self.sampler = get_sampler()
        self.make_empty_intermediate_tensors = (
            self.model.make_empty_intermediate_tensors)

        self.mix_ratio: List[int] = [5, 15]

        # 定义特殊token常量
        self.llm_token_id_delta = torch.tensor(self.speech_token_size, dtype=torch.int32)
        self.sos_eos_token_id = torch.tensor((self.llm_token_id_delta + self.llm_token_size + 1), dtype=torch.int32)  # 163840 + 6564 = 170404
        self.task_token_id = self.sos_eos_token_id + torch.tensor(1, dtype=torch.int32)  # 170405
        self.zero_token_id = self.task_token_id + torch.tensor(1, dtype=torch.int32)

        self.zero_embed_buffer = torch.zeros(
            (vllm_config.scheduler_config.max_num_seqs, self.llm_input_size),
            dtype=self.llm_embedding.weight.dtype,
            device=self.llm_embedding.weight.device
        )
        self.inputs_embed_buffer = torch.zeros(
            (vllm_config.scheduler_config.max_num_batched_tokens, self.llm_input_size),
            dtype=self.llm_embedding.weight.dtype,
            device=self.llm_embedding.weight.device,
        )

    def get_sos_eos_emb(self):
        return self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)

    def get_task_id_emb(self):
        return self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)

    def get_input_embeddings(
        self,
        input_ids: torch.Tensor,
        multimodal_embeddings: Optional[T] = None,
        attn_metadata: Optional["AttentionMetadata"] = None,
    ) -> torch.Tensor:
        """
        Returns the input embeddings merged from the text embeddings from
        input_ids and the multimodal embeddings generated from multimodal
        kwargs.
        """
        # 创建掩码,标记哪些 token_id 属于音频 Token
        mask = input_ids < self.speech_token_size

        # 获取 input_ids 的原始形状
        input_shape = input_ids.shape
        # 展平 input_ids 和掩码以便统一处理
        flat_input_ids = input_ids.view(-1)
        flat_mask = mask.view(-1)

        inputs_embeds = self.inputs_embed_buffer[:flat_input_ids.shape[0]]
        inputs_embeds.zero_()

        # Process speech tokens
        if flat_mask.any():
            speech_token_ids = flat_input_ids[flat_mask]
            inputs_embeds[flat_mask] = self.speech_embedding(speech_token_ids)

        # 处理大于 delta 的 token_id
        if (~flat_mask).any():
            llm_token_ids = flat_input_ids[~flat_mask]
            llm_embeds = torch.zeros_like(inputs_embeds[~flat_mask])

            sos_eos_mask = llm_token_ids == self.sos_eos_token_id
            task_mask = llm_token_ids == self.task_token_id
            zero_mask = llm_token_ids == self.zero_token_id
            normal_mask = ~(sos_eos_mask | task_mask | zero_mask)

            # 分层处理逻辑
            # 第一优先级:SOS/EOS标记
            if sos_eos_mask.any():
                llm_embeds[sos_eos_mask] = self.llm_embedding.weight[self.sos_eos].unsqueeze(0)

            # 第二优先级:任务标记
            if task_mask.any():
                llm_embeds[task_mask] = self.llm_embedding.weight[self.task_id].unsqueeze(0)

            # 第二优先级:空音频标记
            if zero_mask.any():
                llm_embeds[zero_mask] = self.zero_embed_buffer[:len(llm_embeds[zero_mask])]

            # 常规LLM token
            if normal_mask.any():
                original_ids = llm_token_ids[normal_mask] - self.llm_token_id_delta
                # print('original_ids: ',original_ids)
                llm_embeds[normal_mask] = self.model.get_input_embeddings(original_ids)

            inputs_embeds[~flat_mask] = llm_embeds

        inputs_embeds = inputs_embeds.view(*input_shape, self.llm_input_size)

        # 合并多模态嵌入(如果有)
        if multimodal_embeddings is not None:
            inputs_embeds = merge_multimodal_embeddings(
                input_ids, inputs_embeds, multimodal_embeddings,
                self.config.audio_token_index
            )
        return inputs_embeds

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        kv_caches: List[torch.Tensor],
        attn_metadata: AttentionMetadata,
        intermediate_tensors: Optional[IntermediateTensors] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
    ) -> Union[torch.Tensor, IntermediateTensors]:
        if inputs_embeds is None:
            inputs_embeds = self.get_input_embeddings(
                input_ids,
                attn_metadata=attn_metadata,
            )
        return self.model(input_ids, positions, kv_caches,
                        attn_metadata, intermediate_tensors,
                        inputs_embeds)

    def compute_logits(
        self,
        hidden_states: torch.Tensor,
        sampling_metadata: SamplingMetadata,
    ) -> Optional[torch.Tensor]:
        logits = self.logits_processor(self.llm_decoder, hidden_states,
                                       sampling_metadata)
        return logits

    def sample(
        self,
        logits: torch.Tensor,
        sampling_metadata: SamplingMetadata,
    ) -> Optional[SamplerOutput]:
        next_tokens = self.sampler(logits, sampling_metadata)
        return next_tokens

    @staticmethod
    def convert_weights(weights: Iterable[Tuple[str, torch.Tensor]]) -> Iterable[Tuple[str, torch.Tensor]]:
        for name, param in weights:
            # 处理Qwen2Model核心参数
            if name.startswith("llm."):
                if name.startswith("llm.model.model."):
                    name = name.replace("llm.model.model.", "model.")
                else:
                    continue
            # print('weights name: ', name)
            yield name, param

    def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
        weights = self.convert_weights(weights)
        loader = AutoWeightsLoader(self)
        loader.load_weights(weights)