# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import argparse import logging logging.getLogger('matplotlib').setLevel(logging.WARNING) from fastapi import FastAPI, UploadFile, Form, File from fastapi.responses import StreamingResponse from fastapi.responses import Response from fastapi.middleware.cors import CORSMiddleware import uvicorn import numpy as np ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) sys.path.append('{}/../../..'.format(ROOT_DIR)) sys.path.append('{}/../../../third_party/Matcha-TTS'.format(ROOT_DIR)) from cosyvoice.cli.cosyvoice import CosyVoice, CosyVoice2 #from cosyvoice.utils.file_utils import load_wav from fastapi import HTTPException import requests import tempfile import torchaudio # Keep the original load_wav function unchanged def load_wav(wav, target_sr): speech, sample_rate = torchaudio.load(wav, backend='soundfile') speech = speech.mean(dim=0, keepdim=True) if sample_rate != target_sr: assert sample_rate > target_sr, 'wav sample rate {} must be greater than {}'.format(sample_rate, target_sr) speech = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=target_sr)(speech) return speech # Add a new function to handle URLs def load_wav_from_url(url, target_sr): # Download the file from the URL to a temporary file response = requests.get(url) if response.status_code != 200: raise HTTPException(status_code=400, detail=f"Failed to download audio from URL: {url}") # Create a temporary file with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as temp_file: temp_file.write(response.content) temp_file.flush() temp_path = temp_file.name try: # Use the existing load_wav function with the file path speech, sample_rate = torchaudio.load(temp_path, backend='soundfile') speech = speech.mean(dim=0, keepdim=True) if sample_rate != target_sr: assert sample_rate > target_sr, 'wav sample rate {} must be greater than {}'.format(sample_rate, target_sr) speech = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=target_sr)(speech) return speech finally: # Clean up the temporary file os.unlink(temp_path) app = FastAPI() # set cross region allowance app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"]) def generate_data(model_output): for i in model_output: tts_audio = (i['tts_speech'].numpy() * (2 ** 15)).astype(np.int16).tobytes() yield tts_audio @app.get("/inference_sft") @app.post("/inference_sft") async def inference_sft(tts_text: str = Form(), spk_id: str = Form()): model_output = cosyvoice.inference_sft(tts_text, spk_id) return StreamingResponse(generate_data(model_output)) @app.get("/inference_zero_shot") @app.post("/inference_zero_shot") async def inference_zero_shot( tts_text: str = Form(), prompt_text: str = Form(), prompt_wav_url: str = Form(...), # Using ... makes this parameter required speed: float = Form(...) ): # Process the URL directly - no need for conditionals prompt_speech_16k = load_wav_from_url(prompt_wav_url, 16000) # Rest of the function remains the same model_output = cosyvoice.inference_zero_shot(tts_text, prompt_text, prompt_speech_16k, stream=False, speed=speed) # Collect all audio data instead of streaming it audio_data = bytearray() for chunk in generate_data(model_output): audio_data.extend(chunk) # Return complete audio file return Response( content=bytes(audio_data), media_type="audio/wav", headers={"Content-Disposition": "attachment; filename=tts_output.wav"} ) @app.get("/inference_cross_lingual") @app.post("/inference_cross_lingual") async def inference_cross_lingual(tts_text: str = Form(), prompt_wav: UploadFile = File()): prompt_speech_16k = load_wav(prompt_wav.file, 16000) model_output = cosyvoice.inference_cross_lingual(tts_text, prompt_speech_16k) return StreamingResponse(generate_data(model_output)) @app.get("/inference_instruct") @app.post("/inference_instruct") async def inference_instruct(tts_text: str = Form(), spk_id: str = Form(), instruct_text: str = Form()): model_output = cosyvoice.inference_instruct(tts_text, spk_id, instruct_text) return StreamingResponse(generate_data(model_output)) @app.get("/inference_instruct2") @app.post("/inference_instruct2") async def inference_instruct2(tts_text: str = Form(), instruct_text: str = Form(), prompt_wav: UploadFile = File(), speed: float = Form(...)): prompt_speech_16k = load_wav(prompt_wav.file, 16000) # Disable streaming by setting stream=False (assuming the function accepts this parameter) model_output = cosyvoice.inference_instruct2(tts_text, instruct_text, prompt_speech_16k, stream=False, speed=speed) # Collect all audio data instead of streaming it audio_data = bytearray() for chunk in generate_data(model_output): audio_data.extend(chunk) print("instruct模式生成成功!") # Return complete audio file return Response( content=bytes(audio_data), media_type="audio/wav", headers={"Content-Disposition": "attachment; filename=tts_output.wav"} ) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--port', type=int, default=50000) parser.add_argument('--model_dir', type=str, default='pretrained_models/CosyVoice2-0.5B', help='local path or modelscope repo id') args = parser.parse_args() #try: # cosyvoice = CosyVoice(args.model_dir) #except Exception: try: #cosyvoice = CosyVoice2(args.model_dir, load_jit=False, load_trt=True, fp16=True) cosyvoice = CosyVoice2(args.model_dir, load_jit=False, load_trt=True, fp16=True) except Exception: raise TypeError('no valid model_type!') uvicorn.run(app, host="0.0.0.0", port=8000)