File size: 15,471 Bytes
2c3577a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
import warnings
warnings.filterwarnings("ignore")
import utils, os
hps = utils.get_hparams(stage=2)
os.environ["CUDA_VISIBLE_DEVICES"] = hps.train.gpu_numbers.replace("-", ",")
import torch
from torch.nn import functional as F
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import torch.multiprocessing as mp
import torch.distributed as dist, traceback
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.cuda.amp import autocast, GradScaler
from tqdm import tqdm
import logging, traceback

logging.getLogger("matplotlib").setLevel(logging.INFO)
logging.getLogger("h5py").setLevel(logging.INFO)
logging.getLogger("numba").setLevel(logging.INFO)
from random import randint
from module import commons

from module.data_utils import (
    TextAudioSpeakerLoaderV3 as TextAudioSpeakerLoader,
    TextAudioSpeakerCollateV3 as TextAudioSpeakerCollate,
    DistributedBucketSampler,
)
from module.models import (
    SynthesizerTrnV3 as SynthesizerTrn,
    MultiPeriodDiscriminator,
)
from module.losses import generator_loss, discriminator_loss, feature_loss, kl_loss
from module.mel_processing import mel_spectrogram_torch, spec_to_mel_torch
from process_ckpt import savee

torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = False
###反正A100fp32更快,那试试tf32吧
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
torch.set_float32_matmul_precision("medium")  # 最低精度但最快(也就快一丁点),对于结果造成不了影响
# from config import pretrained_s2G,pretrained_s2D
global_step = 0

device = "cpu"  # cuda以外的设备,等mps优化后加入


def main():

    if torch.cuda.is_available():
        n_gpus = torch.cuda.device_count()
    else:
        n_gpus = 1
    os.environ["MASTER_ADDR"] = "localhost"
    os.environ["MASTER_PORT"] = str(randint(20000, 55555))

    mp.spawn(
        run,
        nprocs=n_gpus,
        args=(
            n_gpus,
            hps,
        ),
    )


def run(rank, n_gpus, hps):
    global global_step
    if rank == 0:
        logger = utils.get_logger(hps.data.exp_dir)
        logger.info(hps)
        # utils.check_git_hash(hps.s2_ckpt_dir)
        writer = SummaryWriter(log_dir=hps.s2_ckpt_dir)
        writer_eval = SummaryWriter(log_dir=os.path.join(hps.s2_ckpt_dir, "eval"))

    dist.init_process_group(
        backend = "gloo" if os.name == "nt" or not torch.cuda.is_available() else "nccl",
        init_method="env://?use_libuv=False",
        world_size=n_gpus,
        rank=rank,
    )
    torch.manual_seed(hps.train.seed)
    if torch.cuda.is_available():
        torch.cuda.set_device(rank)

    train_dataset = TextAudioSpeakerLoader(hps.data)  ########
    train_sampler = DistributedBucketSampler(
        train_dataset,
        hps.train.batch_size,
        [
            32,
            300,
            400,
            500,
            600,
            700,
            800,
            900,
            1000,
            # 1100,
            # 1200,
            # 1300,
            # 1400,
            # 1500,
            # 1600,
            # 1700,
            # 1800,
            # 1900,
        ],
        num_replicas=n_gpus,
        rank=rank,
        shuffle=True,
    )
    collate_fn = TextAudioSpeakerCollate()
    train_loader = DataLoader(
        train_dataset,
        num_workers=6,
        shuffle=False,
        pin_memory=True,
        collate_fn=collate_fn,
        batch_sampler=train_sampler,
        persistent_workers=True,
        prefetch_factor=4,
    )
    # if rank == 0:
    #     eval_dataset = TextAudioSpeakerLoader(hps.data.validation_files, hps.data, val=True)
    #     eval_loader = DataLoader(eval_dataset, num_workers=0, shuffle=False,
    #                              batch_size=1, pin_memory=True,
    #                              drop_last=False, collate_fn=collate_fn)

    net_g = SynthesizerTrn(
        hps.data.filter_length // 2 + 1,
        hps.train.segment_size // hps.data.hop_length,
        n_speakers=hps.data.n_speakers,
        **hps.model,
    ).cuda(rank) if torch.cuda.is_available() else SynthesizerTrn(
        hps.data.filter_length // 2 + 1,
        hps.train.segment_size // hps.data.hop_length,
        n_speakers=hps.data.n_speakers,
        **hps.model,
    ).to(device)

    # net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank) if torch.cuda.is_available() else MultiPeriodDiscriminator(hps.model.use_spectral_norm).to(device)
    # for name, param in net_g.named_parameters():
    #     if not param.requires_grad:
    #         print(name, "not requires_grad")

    optim_g = torch.optim.AdamW(
        filter(lambda p: p.requires_grad, net_g.parameters()),###默认所有层lr一致
        hps.train.learning_rate,
        betas=hps.train.betas,
        eps=hps.train.eps,
    )
    # optim_d = torch.optim.AdamW(
    #     net_d.parameters(),
    #     hps.train.learning_rate,
    #     betas=hps.train.betas,
    #     eps=hps.train.eps,
    # )
    if torch.cuda.is_available():
        net_g = DDP(net_g, device_ids=[rank], find_unused_parameters=True)
        # net_d = DDP(net_d, device_ids=[rank], find_unused_parameters=True)
    else:
        net_g = net_g.to(device)
        # net_d = net_d.to(device)

    try:  # 如果能加载自动resume
        # _, _, _, epoch_str = utils.load_checkpoint(
        #     utils.latest_checkpoint_path("%s/logs_s2_%s" % (hps.data.exp_dir,hps.model.version), "D_*.pth"),
        #     net_d,
        #     optim_d,
        # )  # D多半加载没事
        # if rank == 0:
        #     logger.info("loaded D")
        # _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g, optim_g,load_opt=0)
        _, _, _, epoch_str = utils.load_checkpoint(
            utils.latest_checkpoint_path("%s/logs_s2_%s" % (hps.data.exp_dir,hps.model.version), "G_*.pth"),
            net_g,
            optim_g,
        )
        global_step = (epoch_str - 1) * len(train_loader)
        # epoch_str = 1
        # global_step = 0
    except:  # 如果首次不能加载,加载pretrain
        # traceback.print_exc()
        epoch_str = 1
        global_step = 0
        if hps.train.pretrained_s2G != ""and hps.train.pretrained_s2G != None and os.path.exists(hps.train.pretrained_s2G):
            if rank == 0:
                logger.info("loaded pretrained %s" % hps.train.pretrained_s2G)
            print(
                net_g.module.load_state_dict(
                    torch.load(hps.train.pretrained_s2G, map_location="cpu")["weight"],
                    strict=False,
                ) if torch.cuda.is_available() else net_g.load_state_dict(
                    torch.load(hps.train.pretrained_s2G, map_location="cpu")["weight"],
                    strict=False,
                )
            )  ##测试不加载优化器
        # if hps.train.pretrained_s2D != ""and hps.train.pretrained_s2D != None and os.path.exists(hps.train.pretrained_s2D):
        #     if rank == 0:
        #         logger.info("loaded pretrained %s" % hps.train.pretrained_s2D)
        #     print(
        #         net_d.module.load_state_dict(
        #             torch.load(hps.train.pretrained_s2D, map_location="cpu")["weight"]
        #         ) if torch.cuda.is_available() else net_d.load_state_dict(
        #             torch.load(hps.train.pretrained_s2D, map_location="cpu")["weight"]
        #         )
        #     )

    # scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2)
    # scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2)

    scheduler_g = torch.optim.lr_scheduler.ExponentialLR(
        optim_g, gamma=hps.train.lr_decay, last_epoch=-1
    )
    # scheduler_d = torch.optim.lr_scheduler.ExponentialLR(
    #     optim_d, gamma=hps.train.lr_decay, last_epoch=-1
    # )
    for _ in range(epoch_str):
        scheduler_g.step()
        # scheduler_d.step()

    scaler = GradScaler(enabled=hps.train.fp16_run)

    net_d=optim_d=scheduler_d=None
    for epoch in range(epoch_str, hps.train.epochs + 1):
        if rank == 0:
            train_and_evaluate(
                rank,
                epoch,
                hps,
                [net_g, net_d],
                [optim_g, optim_d],
                [scheduler_g, scheduler_d],
                scaler,
                # [train_loader, eval_loader], logger, [writer, writer_eval])
                [train_loader, None],
                logger,
                [writer, writer_eval],
            )
        else:
            train_and_evaluate(
                rank,
                epoch,
                hps,
                [net_g, net_d],
                [optim_g, optim_d],
                [scheduler_g, scheduler_d],
                scaler,
                [train_loader, None],
                None,
                None,
            )
        scheduler_g.step()
        # scheduler_d.step()


def train_and_evaluate(
    rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers
):
    net_g, net_d = nets
    optim_g, optim_d = optims
    # scheduler_g, scheduler_d = schedulers
    train_loader, eval_loader = loaders
    if writers is not None:
        writer, writer_eval = writers

    train_loader.batch_sampler.set_epoch(epoch)
    global global_step

    net_g.train()
    # net_d.train()
    # for batch_idx, (
    #     ssl,
    #     ssl_lengths,
    #     spec,
    #     spec_lengths,
    #     y,
    #     y_lengths,
    #     text,
    #     text_lengths,
    # ) in enumerate(tqdm(train_loader)):
    for batch_idx, (ssl, spec, mel, ssl_lengths, spec_lengths, text, text_lengths, mel_lengths) in enumerate(tqdm(train_loader)):
        if torch.cuda.is_available():
            spec, spec_lengths = spec.cuda(rank, non_blocking=True), spec_lengths.cuda(
                rank, non_blocking=True
            )
            mel, mel_lengths = mel.cuda(rank, non_blocking=True), mel_lengths.cuda(
                rank, non_blocking=True
            )
            ssl = ssl.cuda(rank, non_blocking=True)
            ssl.requires_grad = False
            # ssl_lengths = ssl_lengths.cuda(rank, non_blocking=True)
            text, text_lengths = text.cuda(rank, non_blocking=True), text_lengths.cuda(
                rank, non_blocking=True
            )
        else:
            spec, spec_lengths = spec.to(device), spec_lengths.to(device)
            mel, mel_lengths = mel.to(device), mel_lengths.to(device)
            ssl = ssl.to(device)
            ssl.requires_grad = False
            # ssl_lengths = ssl_lengths.cuda(rank, non_blocking=True)
            text, text_lengths = text.to(device), text_lengths.to(device)

        with autocast(enabled=hps.train.fp16_run):
            cfm_loss = net_g(ssl, spec, mel,ssl_lengths,spec_lengths, text, text_lengths,mel_lengths, use_grad_ckpt=hps.train.grad_ckpt)
            loss_gen_all=cfm_loss
        optim_g.zero_grad()
        scaler.scale(loss_gen_all).backward()
        scaler.unscale_(optim_g)
        grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
        scaler.step(optim_g)
        scaler.update()

        if rank == 0:
            if global_step % hps.train.log_interval == 0:
                lr = optim_g.param_groups[0]['lr']
                # losses = [commit_loss,cfm_loss,mel_loss,loss_disc, loss_gen, loss_fm, loss_mel, loss_kl]
                losses = [cfm_loss]
                logger.info('Train Epoch: {} [{:.0f}%]'.format(
                    epoch,
                    100. * batch_idx / len(train_loader)))
                logger.info([x.item() for x in losses] + [global_step, lr])

                scalar_dict = {"loss/g/total": loss_gen_all, "learning_rate": lr, "grad_norm_g": grad_norm_g}
                # image_dict = {
                #     "slice/mel_org": utils.plot_spectrogram_to_numpy(y_mel[0].data.cpu().numpy()),
                #     "slice/mel_gen": utils.plot_spectrogram_to_numpy(y_hat_mel[0].data.cpu().numpy()),
                #     "all/mel": utils.plot_spectrogram_to_numpy(mel[0].data.cpu().numpy()),
                #     "all/stats_ssl": utils.plot_spectrogram_to_numpy(stats_ssl[0].data.cpu().numpy()),
                # }
                utils.summarize(
                    writer=writer,
                    global_step=global_step,
                    # images=image_dict,
                    scalars=scalar_dict)

            # if global_step % hps.train.eval_interval == 0:
            #     # evaluate(hps, net_g, eval_loader, writer_eval)
            #     utils.save_checkpoint(net_g, optim_g, hps.train.learning_rate, epoch,os.path.join(hps.s2_ckpt_dir, "G_{}.pth".format(global_step)),scaler)
            #     # utils.save_checkpoint(net_d, optim_d, hps.train.learning_rate, epoch,os.path.join(hps.s2_ckpt_dir, "D_{}.pth".format(global_step)),scaler)
            #     # keep_ckpts = getattr(hps.train, 'keep_ckpts', 3)
            #     # if keep_ckpts > 0:
            #     #     utils.clean_checkpoints(path_to_models=hps.s2_ckpt_dir, n_ckpts_to_keep=keep_ckpts, sort_by_time=True)


        global_step += 1
    if epoch % hps.train.save_every_epoch == 0 and rank == 0:
        if hps.train.if_save_latest == 0:
            utils.save_checkpoint(
                net_g,
                optim_g,
                hps.train.learning_rate,
                epoch,
                os.path.join(
                    "%s/logs_s2_%s" % (hps.data.exp_dir,hps.model.version), "G_{}.pth".format(global_step)
                ),
            )
            # utils.save_checkpoint(
            #     net_d,
            #     optim_d,
            #     hps.train.learning_rate,
            #     epoch,
            #     os.path.join(
            #         "%s/logs_s2_%s" % (hps.data.exp_dir,hps.model.version), "D_{}.pth".format(global_step)
            #     ),
            # )
        else:
            utils.save_checkpoint(
                net_g,
                optim_g,
                hps.train.learning_rate,
                epoch,
                os.path.join(
                    "%s/logs_s2_%s" % (hps.data.exp_dir,hps.model.version), "G_{}.pth".format(233333333333)
                ),
            )
            # utils.save_checkpoint(
            #     net_d,
            #     optim_d,
            #     hps.train.learning_rate,
            #     epoch,
            #     os.path.join(
            #         "%s/logs_s2_%s" % (hps.data.exp_dir,hps.model.version), "D_{}.pth".format(233333333333)
            #     ),
            # )
        if rank == 0 and hps.train.if_save_every_weights == True:
            if hasattr(net_g, "module"):
                ckpt = net_g.module.state_dict()
            else:
                ckpt = net_g.state_dict()
            logger.info(
                "saving ckpt %s_e%s:%s"
                % (
                    hps.name,
                    epoch,
                    savee(
                        ckpt,
                        hps.name + "_e%s_s%s" % (epoch, global_step),
                        epoch,
                        global_step,
                        hps,
                    ),
                )
            )

    if rank == 0:
        logger.info("====> Epoch: {}".format(epoch))


if __name__ == "__main__":
    main()