GPT-SoVITS-v4 / GPT_SoVITS /export_torch_script.py
kevinwang676's picture
Add files using upload-large-folder tool
559ee5e verified
# modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/models/t2s_model.py
# reference: https://github.com/lifeiteng/vall-e
import argparse
from typing import Optional
from my_utils import load_audio
import torch
import torchaudio
from torch import IntTensor, LongTensor, Tensor, nn
from torch.nn import functional as F
from transformers import AutoModelForMaskedLM, AutoTokenizer
from feature_extractor import cnhubert
from AR.models.t2s_lightning_module import Text2SemanticLightningModule
from module.models_onnx import SynthesizerTrn
from inference_webui import get_phones_and_bert
import os
import soundfile
default_config = {
"embedding_dim": 512,
"hidden_dim": 512,
"num_head": 8,
"num_layers": 12,
"num_codebook": 8,
"p_dropout": 0.0,
"vocab_size": 1024 + 1,
"phoneme_vocab_size": 512,
"EOS": 1024,
}
def get_raw_t2s_model(dict_s1) -> Text2SemanticLightningModule:
config = dict_s1["config"]
config["model"]["dropout"] = float(config["model"]["dropout"])
t2s_model = Text2SemanticLightningModule(config, "****", is_train=False)
t2s_model.load_state_dict(dict_s1["weight"])
t2s_model = t2s_model.eval()
return t2s_model
@torch.jit.script
def logits_to_probs(
logits,
previous_tokens: Optional[torch.Tensor] = None,
temperature: float = 1.0,
top_k: Optional[int] = None,
top_p: Optional[int] = None,
repetition_penalty: float = 1.0,
):
# if previous_tokens is not None:
# previous_tokens = previous_tokens.squeeze()
# print(logits.shape,previous_tokens.shape)
# pdb.set_trace()
if previous_tokens is not None and repetition_penalty != 1.0:
previous_tokens = previous_tokens.long()
score = torch.gather(logits, dim=1, index=previous_tokens)
score = torch.where(score < 0, score * repetition_penalty, score / repetition_penalty)
logits.scatter_(dim=1, index=previous_tokens, src=score)
if top_p is not None and top_p < 1.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cum_probs = torch.cumsum(torch.nn.functional.softmax(sorted_logits, dim=-1), dim=-1)
sorted_indices_to_remove = cum_probs > top_p
sorted_indices_to_remove[:, 0] = False # keep at least one option
indices_to_remove = sorted_indices_to_remove.scatter(dim=1, index=sorted_indices, src=sorted_indices_to_remove)
logits = logits.masked_fill(indices_to_remove, -float("Inf"))
logits = logits / max(temperature, 1e-5)
if top_k is not None:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
pivot = v[:, -1].unsqueeze(-1)
logits = torch.where(logits < pivot, -float("Inf"), logits)
probs = torch.nn.functional.softmax(logits, dim=-1)
return probs
@torch.jit.script
def multinomial_sample_one_no_sync(probs_sort):
# Does multinomial sampling without a cuda synchronization
q = torch.randn_like(probs_sort)
return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int)
@torch.jit.script
def sample(
logits,
previous_tokens,
temperature: float = 1.0,
top_k: Optional[int] = None,
top_p: Optional[int] = None,
repetition_penalty: float = 1.0,
):
probs = logits_to_probs(
logits=logits,
previous_tokens=previous_tokens,
temperature=temperature,
top_k=top_k,
top_p=top_p,
repetition_penalty=repetition_penalty,
)
idx_next = multinomial_sample_one_no_sync(probs)
return idx_next, probs
@torch.jit.script
def spectrogram_torch(y: Tensor, n_fft: int, sampling_rate: int, hop_size: int, win_size: int, center: bool = False):
hann_window = torch.hann_window(win_size, device=y.device, dtype=y.dtype)
y = torch.nn.functional.pad(
y.unsqueeze(1),
(int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
mode="reflect",
)
y = y.squeeze(1)
spec = torch.stft(
y,
n_fft,
hop_length=hop_size,
win_length=win_size,
window=hann_window,
center=center,
pad_mode="reflect",
normalized=False,
onesided=True,
return_complex=False,
)
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
return spec
class DictToAttrRecursive(dict):
def __init__(self, input_dict):
super().__init__(input_dict)
for key, value in input_dict.items():
if isinstance(value, dict):
value = DictToAttrRecursive(value)
self[key] = value
setattr(self, key, value)
def __getattr__(self, item):
try:
return self[item]
except KeyError:
raise AttributeError(f"Attribute {item} not found")
def __setattr__(self, key, value):
if isinstance(value, dict):
value = DictToAttrRecursive(value)
super(DictToAttrRecursive, self).__setitem__(key, value)
super().__setattr__(key, value)
def __delattr__(self, item):
try:
del self[item]
except KeyError:
raise AttributeError(f"Attribute {item} not found")
@torch.jit.script
class T2SMLP:
def __init__(self, w1, b1, w2, b2):
self.w1 = w1
self.b1 = b1
self.w2 = w2
self.b2 = b2
def forward(self, x):
x = F.relu(F.linear(x, self.w1, self.b1))
x = F.linear(x, self.w2, self.b2)
return x
@torch.jit.script
class T2SBlock:
def __init__(
self,
num_heads: int,
hidden_dim: int,
mlp: T2SMLP,
qkv_w,
qkv_b,
out_w,
out_b,
norm_w1,
norm_b1,
norm_eps1: float,
norm_w2,
norm_b2,
norm_eps2: float,
):
self.num_heads = num_heads
self.mlp = mlp
self.hidden_dim: int = hidden_dim
self.qkv_w = qkv_w
self.qkv_b = qkv_b
self.out_w = out_w
self.out_b = out_b
self.norm_w1 = norm_w1
self.norm_b1 = norm_b1
self.norm_eps1 = norm_eps1
self.norm_w2 = norm_w2
self.norm_b2 = norm_b2
self.norm_eps2 = norm_eps2
self.false = torch.tensor(False, dtype=torch.bool)
@torch.jit.ignore
def to_mask(self, x: torch.Tensor, padding_mask: Optional[torch.Tensor]):
if padding_mask is None:
return x
if padding_mask.dtype == torch.bool:
return x.masked_fill(padding_mask, 0)
else:
return x * padding_mask
def process_prompt(self, x: torch.Tensor, attn_mask: torch.Tensor, padding_mask: Optional[torch.Tensor] = None):
q, k, v = F.linear(self.to_mask(x, padding_mask), self.qkv_w, self.qkv_b).chunk(3, dim=-1)
batch_size = q.shape[0]
q_len = q.shape[1]
kv_len = k.shape[1]
q = self.to_mask(q, padding_mask)
k_cache = self.to_mask(k, padding_mask)
v_cache = self.to_mask(v, padding_mask)
q = q.view(batch_size, q_len, self.num_heads, -1).transpose(1, 2)
k = k_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2)
v = v_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2)
attn = F.scaled_dot_product_attention(q, k, v, ~attn_mask)
attn = attn.permute(2, 0, 1, 3).reshape(batch_size * q_len, self.hidden_dim)
attn = attn.view(q_len, batch_size, self.hidden_dim).transpose(1, 0)
attn = F.linear(self.to_mask(attn, padding_mask), self.out_w, self.out_b)
if padding_mask is not None:
for i in range(batch_size):
# mask = padding_mask[i,:,0]
if self.false.device != padding_mask.device:
self.false = self.false.to(padding_mask.device)
idx = torch.where(padding_mask[i, :, 0] == self.false)[0]
x_item = x[i, idx, :].unsqueeze(0)
attn_item = attn[i, idx, :].unsqueeze(0)
x_item = x_item + attn_item
x_item = F.layer_norm(x_item, [self.hidden_dim], self.norm_w1, self.norm_b1, self.norm_eps1)
x_item = x_item + self.mlp.forward(x_item)
x_item = F.layer_norm(
x_item,
[self.hidden_dim],
self.norm_w2,
self.norm_b2,
self.norm_eps2,
)
x[i, idx, :] = x_item.squeeze(0)
x = self.to_mask(x, padding_mask)
else:
x = x + attn
x = F.layer_norm(x, [self.hidden_dim], self.norm_w1, self.norm_b1, self.norm_eps1)
x = x + self.mlp.forward(x)
x = F.layer_norm(
x,
[self.hidden_dim],
self.norm_w2,
self.norm_b2,
self.norm_eps2,
)
return x, k_cache, v_cache
def decode_next_token(self, x: torch.Tensor, k_cache: torch.Tensor, v_cache: torch.Tensor):
q, k, v = F.linear(x, self.qkv_w, self.qkv_b).chunk(3, dim=-1)
k_cache = torch.cat([k_cache, k], dim=1)
v_cache = torch.cat([v_cache, v], dim=1)
batch_size = q.shape[0]
q_len = q.shape[1]
kv_len = k_cache.shape[1]
q = q.view(batch_size, q_len, self.num_heads, -1).transpose(1, 2)
k = k_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2)
v = v_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2)
attn = F.scaled_dot_product_attention(q, k, v)
attn = attn.permute(2, 0, 1, 3).reshape(batch_size * q_len, self.hidden_dim)
attn = attn.view(q_len, batch_size, self.hidden_dim).transpose(1, 0)
attn = F.linear(attn, self.out_w, self.out_b)
x = x + attn
x = F.layer_norm(x, [self.hidden_dim], self.norm_w1, self.norm_b1, self.norm_eps1)
x = x + self.mlp.forward(x)
x = F.layer_norm(
x,
[self.hidden_dim],
self.norm_w2,
self.norm_b2,
self.norm_eps2,
)
return x, k_cache, v_cache
@torch.jit.script
class T2STransformer:
def __init__(self, num_blocks: int, blocks: list[T2SBlock]):
self.num_blocks: int = num_blocks
self.blocks = blocks
def process_prompt(self, x: torch.Tensor, attn_mask: torch.Tensor, padding_mask: Optional[torch.Tensor] = None):
k_cache: list[torch.Tensor] = []
v_cache: list[torch.Tensor] = []
for i in range(self.num_blocks):
x, k_cache_, v_cache_ = self.blocks[i].process_prompt(x, attn_mask, padding_mask)
k_cache.append(k_cache_)
v_cache.append(v_cache_)
return x, k_cache, v_cache
def decode_next_token(self, x: torch.Tensor, k_cache: list[torch.Tensor], v_cache: list[torch.Tensor]):
for i in range(self.num_blocks):
x, k_cache[i], v_cache[i] = self.blocks[i].decode_next_token(x, k_cache[i], v_cache[i])
return x, k_cache, v_cache
class VitsModel(nn.Module):
def __init__(self, vits_path):
super().__init__()
# dict_s2 = torch.load(vits_path,map_location="cpu")
dict_s2 = torch.load(vits_path)
self.hps = dict_s2["config"]
if dict_s2["weight"]["enc_p.text_embedding.weight"].shape[0] == 322:
self.hps["model"]["version"] = "v1"
else:
self.hps["model"]["version"] = "v2"
self.hps = DictToAttrRecursive(self.hps)
self.hps.model.semantic_frame_rate = "25hz"
self.vq_model = SynthesizerTrn(
self.hps.data.filter_length // 2 + 1,
self.hps.train.segment_size // self.hps.data.hop_length,
n_speakers=self.hps.data.n_speakers,
**self.hps.model,
)
self.vq_model.eval()
self.vq_model.load_state_dict(dict_s2["weight"], strict=False)
def forward(self, text_seq, pred_semantic, ref_audio, speed=1.0):
refer = spectrogram_torch(
ref_audio,
self.hps.data.filter_length,
self.hps.data.sampling_rate,
self.hps.data.hop_length,
self.hps.data.win_length,
center=False,
)
return self.vq_model(pred_semantic, text_seq, refer, speed)[0, 0]
class T2SModel(nn.Module):
def __init__(self, raw_t2s: Text2SemanticLightningModule):
super(T2SModel, self).__init__()
self.model_dim = raw_t2s.model.model_dim
self.embedding_dim = raw_t2s.model.embedding_dim
self.num_head = raw_t2s.model.num_head
self.num_layers = raw_t2s.model.num_layers
self.vocab_size = raw_t2s.model.vocab_size
self.phoneme_vocab_size = raw_t2s.model.phoneme_vocab_size
# self.p_dropout = float(raw_t2s.model.p_dropout)
self.EOS: int = int(raw_t2s.model.EOS)
self.norm_first = raw_t2s.model.norm_first
assert self.EOS == self.vocab_size - 1
self.hz = 50
self.bert_proj = raw_t2s.model.bert_proj
self.ar_text_embedding = raw_t2s.model.ar_text_embedding
self.ar_text_position = raw_t2s.model.ar_text_position
self.ar_audio_embedding = raw_t2s.model.ar_audio_embedding
self.ar_audio_position = raw_t2s.model.ar_audio_position
# self.t2s_transformer = T2STransformer(self.num_layers, blocks)
# self.t2s_transformer = raw_t2s.model.t2s_transformer
blocks = []
h = raw_t2s.model.h
for i in range(self.num_layers):
layer = h.layers[i]
t2smlp = T2SMLP(layer.linear1.weight, layer.linear1.bias, layer.linear2.weight, layer.linear2.bias)
block = T2SBlock(
self.num_head,
self.model_dim,
t2smlp,
layer.self_attn.in_proj_weight,
layer.self_attn.in_proj_bias,
layer.self_attn.out_proj.weight,
layer.self_attn.out_proj.bias,
layer.norm1.weight,
layer.norm1.bias,
layer.norm1.eps,
layer.norm2.weight,
layer.norm2.bias,
layer.norm2.eps,
)
blocks.append(block)
self.t2s_transformer = T2STransformer(self.num_layers, blocks)
# self.ar_predict_layer = nn.Linear(self.model_dim, self.vocab_size, bias=False)
self.ar_predict_layer = raw_t2s.model.ar_predict_layer
# self.loss_fct = nn.CrossEntropyLoss(reduction="sum")
self.max_sec = raw_t2s.config["data"]["max_sec"]
self.top_k = int(raw_t2s.config["inference"]["top_k"])
self.early_stop_num = torch.LongTensor([self.hz * self.max_sec])
def forward(
self,
prompts: LongTensor,
ref_seq: LongTensor,
text_seq: LongTensor,
ref_bert: torch.Tensor,
text_bert: torch.Tensor,
top_k: LongTensor,
):
bert = torch.cat([ref_bert.T, text_bert.T], 1)
all_phoneme_ids = torch.cat([ref_seq, text_seq], 1)
bert = bert.unsqueeze(0)
x = self.ar_text_embedding(all_phoneme_ids)
x = x + self.bert_proj(bert.transpose(1, 2))
x: torch.Tensor = self.ar_text_position(x)
early_stop_num = self.early_stop_num
# [1,N,512] [1,N]
# y, k, v, y_emb, x_example = self.first_stage_decoder(x, prompts)
y = prompts
# x_example = x[:,:,0] * 0.0
x_len = x.shape[1]
x_attn_mask = torch.zeros((x_len, x_len), dtype=torch.bool)
y_emb = self.ar_audio_embedding(y)
y_len = y_emb.shape[1]
prefix_len = y.shape[1]
y_pos = self.ar_audio_position(y_emb)
xy_pos = torch.concat([x, y_pos], dim=1)
bsz = x.shape[0]
src_len = x_len + y_len
x_attn_mask_pad = F.pad(
x_attn_mask,
(0, y_len), ###xx的纯0扩展到xx纯0+xy纯1,(x,x+y)
value=True,
)
y_attn_mask = F.pad( ###yy的右上1扩展到左边xy的0,(y,x+y)
torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1),
(x_len, 0),
value=False,
)
xy_attn_mask = (
torch.concat([x_attn_mask_pad, y_attn_mask], dim=0)
.unsqueeze(0)
.expand(bsz * self.num_head, -1, -1)
.view(bsz, self.num_head, src_len, src_len)
.to(device=x.device, dtype=torch.bool)
)
idx = 0
top_k = int(top_k)
xy_dec, k_cache, v_cache = self.t2s_transformer.process_prompt(xy_pos, xy_attn_mask, None)
logits = self.ar_predict_layer(xy_dec[:, -1])
logits = logits[:, :-1]
samples = sample(logits, y, top_k=top_k, top_p=1, repetition_penalty=1.35, temperature=1.0)[0]
y = torch.concat([y, samples], dim=1)
y_emb = self.ar_audio_embedding(y[:, -1:])
xy_pos = y_emb * self.ar_audio_position.x_scale + self.ar_audio_position.alpha * self.ar_audio_position.pe[
:, y_len + idx
].to(dtype=y_emb.dtype, device=y_emb.device)
stop = False
# for idx in range(1, 50):
for idx in range(1, 1500):
# [1, N] [N_layer, N, 1, 512] [N_layer, N, 1, 512] [1, N, 512] [1] [1, N, 512] [1, N]
# y, k, v, y_emb, logits, samples = self.stage_decoder(y, k, v, y_emb, x_example)
xy_dec, k_cache, v_cache = self.t2s_transformer.decode_next_token(xy_pos, k_cache, v_cache)
logits = self.ar_predict_layer(xy_dec[:, -1])
if idx < 11: ###至少预测出10个token不然不给停止(0.4s)
logits = logits[:, :-1]
samples = sample(logits, y, top_k=top_k, top_p=1, repetition_penalty=1.35, temperature=1.0)[0]
y = torch.concat([y, samples], dim=1)
if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
stop = True
if torch.argmax(logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS:
stop = True
if stop:
if y.shape[1] == 0:
y = torch.concat([y, torch.zeros_like(samples)], dim=1)
break
y_emb = self.ar_audio_embedding(y[:, -1:])
xy_pos = y_emb * self.ar_audio_position.x_scale + self.ar_audio_position.alpha * self.ar_audio_position.pe[
:, y_len + idx
].to(dtype=y_emb.dtype, device=y_emb.device)
y[0, -1] = 0
return y[:, -idx:].unsqueeze(0)
bert_path = os.environ.get("bert_path", "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large")
cnhubert_base_path = "GPT_SoVITS/pretrained_models/chinese-hubert-base"
cnhubert.cnhubert_base_path = cnhubert_base_path
@torch.jit.script
def build_phone_level_feature(res: Tensor, word2ph: IntTensor):
phone_level_feature = []
for i in range(word2ph.shape[0]):
repeat_feature = res[i].repeat(word2ph[i].item(), 1)
phone_level_feature.append(repeat_feature)
phone_level_feature = torch.cat(phone_level_feature, dim=0)
# [sum(word2ph), 1024]
return phone_level_feature
class MyBertModel(torch.nn.Module):
def __init__(self, bert_model):
super(MyBertModel, self).__init__()
self.bert = bert_model
def forward(
self, input_ids: torch.Tensor, attention_mask: torch.Tensor, token_type_ids: torch.Tensor, word2ph: IntTensor
):
outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)
# res = torch.cat(outputs["hidden_states"][-3:-2], -1)[0][1:-1]
res = torch.cat(outputs[1][-3:-2], -1)[0][1:-1]
return build_phone_level_feature(res, word2ph)
class SSLModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.ssl = cnhubert.get_model().model
def forward(self, ref_audio_16k) -> torch.Tensor:
ssl_content = self.ssl(ref_audio_16k)["last_hidden_state"].transpose(1, 2)
return ssl_content
class ExportSSLModel(torch.nn.Module):
def __init__(self, ssl: SSLModel):
super().__init__()
self.ssl = ssl
def forward(self, ref_audio: torch.Tensor):
return self.ssl(ref_audio)
@torch.jit.export
def resample(self, ref_audio: torch.Tensor, src_sr: int, dst_sr: int) -> torch.Tensor:
audio = resamplex(ref_audio, src_sr, dst_sr).float()
return audio
def export_bert(output_path):
tokenizer = AutoTokenizer.from_pretrained(bert_path)
text = "叹息声一声接着一声传出,木兰对着房门织布.听不见织布机织布的声音,只听见木兰在叹息.问木兰在想什么?问木兰在惦记什么?木兰答道,我也没有在想什么,也没有在惦记什么."
ref_bert_inputs = tokenizer(text, return_tensors="pt")
word2ph = []
for c in text:
if c in [",", "。", ":", "?", ",", ".", "?"]:
word2ph.append(1)
else:
word2ph.append(2)
ref_bert_inputs["word2ph"] = torch.Tensor(word2ph).int()
bert_model = AutoModelForMaskedLM.from_pretrained(bert_path, output_hidden_states=True, torchscript=True)
my_bert_model = MyBertModel(bert_model)
ref_bert_inputs = {
"input_ids": ref_bert_inputs["input_ids"],
"attention_mask": ref_bert_inputs["attention_mask"],
"token_type_ids": ref_bert_inputs["token_type_ids"],
"word2ph": ref_bert_inputs["word2ph"],
}
torch._dynamo.mark_dynamic(ref_bert_inputs["input_ids"], 1)
torch._dynamo.mark_dynamic(ref_bert_inputs["attention_mask"], 1)
torch._dynamo.mark_dynamic(ref_bert_inputs["token_type_ids"], 1)
torch._dynamo.mark_dynamic(ref_bert_inputs["word2ph"], 0)
my_bert_model = torch.jit.trace(my_bert_model, example_kwarg_inputs=ref_bert_inputs)
output_path = os.path.join(output_path, "bert_model.pt")
my_bert_model.save(output_path)
print("#### exported bert ####")
def export(gpt_path, vits_path, ref_audio_path, ref_text, output_path, export_bert_and_ssl=False, device="cpu"):
if not os.path.exists(output_path):
os.makedirs(output_path)
print(f"目录已创建: {output_path}")
else:
print(f"目录已存在: {output_path}")
ref_audio = torch.tensor([load_audio(ref_audio_path, 16000)]).float()
ssl = SSLModel()
if export_bert_and_ssl:
s = ExportSSLModel(torch.jit.trace(ssl, example_inputs=(ref_audio)))
ssl_path = os.path.join(output_path, "ssl_model.pt")
torch.jit.script(s).save(ssl_path)
print("#### exported ssl ####")
export_bert(output_path)
else:
s = ExportSSLModel(ssl)
print(f"device: {device}")
ref_seq_id, ref_bert_T, ref_norm_text = get_phones_and_bert(ref_text, "all_zh", "v2")
ref_seq = torch.LongTensor([ref_seq_id]).to(device)
ref_bert = ref_bert_T.T.to(ref_seq.device)
text_seq_id, text_bert_T, norm_text = get_phones_and_bert(
"这是一条测试语音,说什么无所谓,只是给它一个例子", "all_zh", "v2"
)
text_seq = torch.LongTensor([text_seq_id]).to(device)
text_bert = text_bert_T.T.to(text_seq.device)
ssl_content = ssl(ref_audio).to(device)
# vits_path = "SoVITS_weights_v2/xw_e8_s216.pth"
vits = VitsModel(vits_path).to(device)
vits.eval()
# gpt_path = "GPT_weights_v2/xw-e15.ckpt"
# dict_s1 = torch.load(gpt_path, map_location=device)
dict_s1 = torch.load(gpt_path)
raw_t2s = get_raw_t2s_model(dict_s1).to(device)
print("#### get_raw_t2s_model ####")
print(raw_t2s.config)
t2s_m = T2SModel(raw_t2s)
t2s_m.eval()
t2s = torch.jit.script(t2s_m).to(device)
print("#### script t2s_m ####")
print("vits.hps.data.sampling_rate:", vits.hps.data.sampling_rate)
gpt_sovits = GPT_SoVITS(t2s, vits).to(device)
gpt_sovits.eval()
ref_audio_sr = s.resample(ref_audio, 16000, 32000).to(device)
torch._dynamo.mark_dynamic(ssl_content, 2)
torch._dynamo.mark_dynamic(ref_audio_sr, 1)
torch._dynamo.mark_dynamic(ref_seq, 1)
torch._dynamo.mark_dynamic(text_seq, 1)
torch._dynamo.mark_dynamic(ref_bert, 0)
torch._dynamo.mark_dynamic(text_bert, 0)
top_k = torch.LongTensor([5]).to(device)
with torch.no_grad():
gpt_sovits_export = torch.jit.trace(
gpt_sovits, example_inputs=(ssl_content, ref_audio_sr, ref_seq, text_seq, ref_bert, text_bert, top_k)
)
gpt_sovits_path = os.path.join(output_path, "gpt_sovits_model.pt")
gpt_sovits_export.save(gpt_sovits_path)
print("#### exported gpt_sovits ####")
@torch.jit.script
def parse_audio(ref_audio):
ref_audio_16k = torchaudio.functional.resample(ref_audio, 48000, 16000).float() # .to(ref_audio.device)
ref_audio_sr = torchaudio.functional.resample(ref_audio, 48000, 32000).float() # .to(ref_audio.device)
return ref_audio_16k, ref_audio_sr
@torch.jit.script
def resamplex(ref_audio: torch.Tensor, src_sr: int, dst_sr: int) -> torch.Tensor:
return torchaudio.functional.resample(ref_audio, src_sr, dst_sr).float()
class GPT_SoVITS(nn.Module):
def __init__(self, t2s: T2SModel, vits: VitsModel):
super().__init__()
self.t2s = t2s
self.vits = vits
def forward(
self,
ssl_content: torch.Tensor,
ref_audio_sr: torch.Tensor,
ref_seq: Tensor,
text_seq: Tensor,
ref_bert: Tensor,
text_bert: Tensor,
top_k: LongTensor,
speed=1.0,
):
codes = self.vits.vq_model.extract_latent(ssl_content)
prompt_semantic = codes[0, 0]
prompts = prompt_semantic.unsqueeze(0)
pred_semantic = self.t2s(prompts, ref_seq, text_seq, ref_bert, text_bert, top_k)
audio = self.vits(text_seq, pred_semantic, ref_audio_sr, speed)
return audio
def test():
parser = argparse.ArgumentParser(description="GPT-SoVITS Command Line Tool")
parser.add_argument("--gpt_model", required=True, help="Path to the GPT model file")
parser.add_argument("--sovits_model", required=True, help="Path to the SoVITS model file")
parser.add_argument("--ref_audio", required=True, help="Path to the reference audio file")
parser.add_argument("--ref_text", required=True, help="Path to the reference text file")
parser.add_argument("--output_path", required=True, help="Path to the output directory")
args = parser.parse_args()
gpt_path = args.gpt_model
vits_path = args.sovits_model
ref_audio_path = args.ref_audio
ref_text = args.ref_text
tokenizer = AutoTokenizer.from_pretrained(bert_path)
# bert_model = AutoModelForMaskedLM.from_pretrained(bert_path,output_hidden_states=True,torchscript=True)
# bert = MyBertModel(bert_model)
my_bert = torch.jit.load("onnx/bert_model.pt", map_location="cuda")
# dict_s1 = torch.load(gpt_path, map_location="cuda")
# raw_t2s = get_raw_t2s_model(dict_s1)
# t2s = T2SModel(raw_t2s)
# t2s.eval()
# t2s = torch.jit.load("onnx/xw/t2s_model.pt",map_location='cuda')
# vits_path = "SoVITS_weights_v2/xw_e8_s216.pth"
# vits = VitsModel(vits_path)
# vits.eval()
# ssl = ExportSSLModel(SSLModel()).to('cuda')
# ssl.eval()
ssl = torch.jit.load("onnx/by/ssl_model.pt", map_location="cuda")
# gpt_sovits = GPT_SoVITS(t2s,vits)
gpt_sovits = torch.jit.load("onnx/by/gpt_sovits_model.pt", map_location="cuda")
ref_seq_id, ref_bert_T, ref_norm_text = get_phones_and_bert(ref_text, "all_zh", "v2")
ref_seq = torch.LongTensor([ref_seq_id])
ref_bert = ref_bert_T.T.to(ref_seq.device)
# text_seq_id,text_bert_T,norm_text = get_phones_and_bert("昨天晚上看见征兵文书,知道君主在大规模征兵,那么多卷征兵文册,每一卷上都有父亲的名字.","all_zh",'v2')
text = "昨天晚上看见征兵文书,知道君主在大规模征兵,那么多卷征兵文册,每一卷上都有父亲的名字."
text_seq_id, text_bert_T, norm_text = get_phones_and_bert(text, "all_zh", "v2")
test_bert = tokenizer(text, return_tensors="pt")
word2ph = []
for c in text:
if c in [",", "。", ":", "?", "?", ",", "."]:
word2ph.append(1)
else:
word2ph.append(2)
test_bert["word2ph"] = torch.Tensor(word2ph).int()
test_bert = my_bert(
test_bert["input_ids"].to("cuda"),
test_bert["attention_mask"].to("cuda"),
test_bert["token_type_ids"].to("cuda"),
test_bert["word2ph"].to("cuda"),
)
text_seq = torch.LongTensor([text_seq_id])
text_bert = text_bert_T.T.to(text_seq.device)
print("text_bert:", text_bert.shape, text_bert)
print("test_bert:", test_bert.shape, test_bert)
print(torch.allclose(text_bert.to("cuda"), test_bert))
print("text_seq:", text_seq.shape)
print("text_bert:", text_bert.shape, text_bert.type())
# [1,N]
ref_audio = torch.tensor([load_audio(ref_audio_path, 16000)]).float().to("cuda")
print("ref_audio:", ref_audio.shape)
ref_audio_sr = ssl.resample(ref_audio, 16000, 32000)
print("start ssl")
ssl_content = ssl(ref_audio)
print("start gpt_sovits:")
print("ssl_content:", ssl_content.shape)
print("ref_audio_sr:", ref_audio_sr.shape)
print("ref_seq:", ref_seq.shape)
ref_seq = ref_seq.to("cuda")
print("text_seq:", text_seq.shape)
text_seq = text_seq.to("cuda")
print("ref_bert:", ref_bert.shape)
ref_bert = ref_bert.to("cuda")
print("text_bert:", text_bert.shape)
text_bert = text_bert.to("cuda")
top_k = torch.LongTensor([5]).to("cuda")
with torch.no_grad():
audio = gpt_sovits(ssl_content, ref_audio_sr, ref_seq, text_seq, ref_bert, test_bert, top_k)
print("start write wav")
soundfile.write("out.wav", audio.detach().cpu().numpy(), 32000)
import text
import json
def export_symbel(version="v2"):
if version == "v1":
symbols = text._symbol_to_id_v1
with open("onnx/symbols_v1.json", "w") as file:
json.dump(symbols, file, indent=4)
else:
symbols = text._symbol_to_id_v2
with open("onnx/symbols_v2.json", "w") as file:
json.dump(symbols, file, indent=4)
def main():
parser = argparse.ArgumentParser(description="GPT-SoVITS Command Line Tool")
parser.add_argument("--gpt_model", required=True, help="Path to the GPT model file")
parser.add_argument("--sovits_model", required=True, help="Path to the SoVITS model file")
parser.add_argument("--ref_audio", required=True, help="Path to the reference audio file")
parser.add_argument("--ref_text", required=True, help="Path to the reference text file")
parser.add_argument("--output_path", required=True, help="Path to the output directory")
parser.add_argument("--export_common_model", action="store_true", help="Export Bert and SSL model")
parser.add_argument("--device", help="Device to use")
args = parser.parse_args()
export(
gpt_path=args.gpt_model,
vits_path=args.sovits_model,
ref_audio_path=args.ref_audio,
ref_text=args.ref_text,
output_path=args.output_path,
device=args.device,
export_bert_and_ssl=args.export_common_model,
)
import inference_webui
if __name__ == "__main__":
inference_webui.is_half = False
inference_webui.dtype = torch.float32
main()
# test()