GPT-SoVITS-v4 / GPT_SoVITS /inference_webui.py
kevinwang676's picture
Add files using upload-large-folder tool
559ee5e verified
"""
按中英混合识别
按日英混合识别
多语种启动切分识别语种
全部按中文识别
全部按英文识别
全部按日文识别
"""
import logging
import traceback
import warnings
import torchaudio
logging.getLogger("markdown_it").setLevel(logging.ERROR)
logging.getLogger("urllib3").setLevel(logging.ERROR)
logging.getLogger("httpcore").setLevel(logging.ERROR)
logging.getLogger("httpx").setLevel(logging.ERROR)
logging.getLogger("asyncio").setLevel(logging.ERROR)
logging.getLogger("charset_normalizer").setLevel(logging.ERROR)
logging.getLogger("torchaudio._extension").setLevel(logging.ERROR)
logging.getLogger("multipart.multipart").setLevel(logging.ERROR)
warnings.simplefilter(action="ignore", category=FutureWarning)
import json
import os
import re
import sys
import torch
from text.LangSegmenter import LangSegmenter
try:
import gradio.analytics as analytics
analytics.version_check = lambda: None
except:
...
version = model_version = os.environ.get("version", "v2")
path_sovits_v3 = "GPT_SoVITS/pretrained_models/s2Gv3.pth"
path_sovits_v4 = "GPT_SoVITS/pretrained_models/gsv-v4-pretrained/s2Gv4.pth"
is_exist_s2gv3 = os.path.exists(path_sovits_v3)
is_exist_s2gv4 = os.path.exists(path_sovits_v4)
pretrained_sovits_name = [
"GPT_SoVITS/pretrained_models/s2G488k.pth",
"GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth",
"GPT_SoVITS/pretrained_models/s2Gv3.pth",
"GPT_SoVITS/pretrained_models/gsv-v4-pretrained/s2Gv4.pth",
]
pretrained_gpt_name = [
"GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt",
"GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt",
"GPT_SoVITS/pretrained_models/s1v3.ckpt",
"GPT_SoVITS/pretrained_models/s1v3.ckpt",
]
_ = [[], []]
for i in range(4):
if os.path.exists(pretrained_gpt_name[i]):
_[0].append(pretrained_gpt_name[i])
if os.path.exists(pretrained_sovits_name[i]):
_[-1].append(pretrained_sovits_name[i])
pretrained_gpt_name, pretrained_sovits_name = _
if os.path.exists("./weight.json"):
pass
else:
with open("./weight.json", "w", encoding="utf-8") as file:
json.dump({"GPT": {}, "SoVITS": {}}, file)
with open("./weight.json", "r", encoding="utf-8") as file:
weight_data = file.read()
weight_data = json.loads(weight_data)
gpt_path = os.environ.get("gpt_path", weight_data.get("GPT", {}).get(version, pretrained_gpt_name))
sovits_path = os.environ.get("sovits_path", weight_data.get("SoVITS", {}).get(version, pretrained_sovits_name))
if isinstance(gpt_path, list):
gpt_path = gpt_path[0]
if isinstance(sovits_path, list):
sovits_path = sovits_path[0]
# gpt_path = os.environ.get(
# "gpt_path", pretrained_gpt_name
# )
# sovits_path = os.environ.get("sovits_path", pretrained_sovits_name)
cnhubert_base_path = os.environ.get("cnhubert_base_path", "GPT_SoVITS/pretrained_models/chinese-hubert-base")
bert_path = os.environ.get("bert_path", "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large")
infer_ttswebui = os.environ.get("infer_ttswebui", 9872)
infer_ttswebui = int(infer_ttswebui)
is_share = os.environ.get("is_share", "False")
is_share = eval(is_share)
if "_CUDA_VISIBLE_DEVICES" in os.environ:
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"]
is_half = eval(os.environ.get("is_half", "True")) and torch.cuda.is_available()
# is_half=False
punctuation = set(["!", "?", "…", ",", ".", "-", " "])
import gradio as gr
import librosa
import numpy as np
from feature_extractor import cnhubert
from transformers import AutoModelForMaskedLM, AutoTokenizer
cnhubert.cnhubert_base_path = cnhubert_base_path
import random
from GPT_SoVITS.module.models import SynthesizerTrn, SynthesizerTrnV3,Generator
def set_seed(seed):
if seed == -1:
seed = random.randint(0, 1000000)
seed = int(seed)
random.seed(seed)
os.environ["PYTHONHASHSEED"] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
# set_seed(42)
from time import time as ttime
from AR.models.t2s_lightning_module import Text2SemanticLightningModule
from peft import LoraConfig, get_peft_model
from text import cleaned_text_to_sequence
from text.cleaner import clean_text
from tools.i18n.i18n import I18nAuto, scan_language_list
language = os.environ.get("language", "Auto")
language = sys.argv[-1] if sys.argv[-1] in scan_language_list() else language
i18n = I18nAuto(language=language)
# os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' # 确保直接启动推理UI时也能够设置。
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
dict_language_v1 = {
i18n("中文"): "all_zh", # 全部按中文识别
i18n("英文"): "en", # 全部按英文识别#######不变
i18n("日文"): "all_ja", # 全部按日文识别
i18n("中英混合"): "zh", # 按中英混合识别####不变
i18n("日英混合"): "ja", # 按日英混合识别####不变
i18n("多语种混合"): "auto", # 多语种启动切分识别语种
}
dict_language_v2 = {
i18n("中文"): "all_zh", # 全部按中文识别
i18n("英文"): "en", # 全部按英文识别#######不变
i18n("日文"): "all_ja", # 全部按日文识别
i18n("粤语"): "all_yue", # 全部按中文识别
i18n("韩文"): "all_ko", # 全部按韩文识别
i18n("中英混合"): "zh", # 按中英混合识别####不变
i18n("日英混合"): "ja", # 按日英混合识别####不变
i18n("粤英混合"): "yue", # 按粤英混合识别####不变
i18n("韩英混合"): "ko", # 按韩英混合识别####不变
i18n("多语种混合"): "auto", # 多语种启动切分识别语种
i18n("多语种混合(粤语)"): "auto_yue", # 多语种启动切分识别语种
}
dict_language = dict_language_v1 if version == "v1" else dict_language_v2
tokenizer = AutoTokenizer.from_pretrained(bert_path)
bert_model = AutoModelForMaskedLM.from_pretrained(bert_path)
if is_half == True:
bert_model = bert_model.half().to(device)
else:
bert_model = bert_model.to(device)
def get_bert_feature(text, word2ph):
with torch.no_grad():
inputs = tokenizer(text, return_tensors="pt")
for i in inputs:
inputs[i] = inputs[i].to(device)
res = bert_model(**inputs, output_hidden_states=True)
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
assert len(word2ph) == len(text)
phone_level_feature = []
for i in range(len(word2ph)):
repeat_feature = res[i].repeat(word2ph[i], 1)
phone_level_feature.append(repeat_feature)
phone_level_feature = torch.cat(phone_level_feature, dim=0)
return phone_level_feature.T
class DictToAttrRecursive(dict):
def __init__(self, input_dict):
super().__init__(input_dict)
for key, value in input_dict.items():
if isinstance(value, dict):
value = DictToAttrRecursive(value)
self[key] = value
setattr(self, key, value)
def __getattr__(self, item):
try:
return self[item]
except KeyError:
raise AttributeError(f"Attribute {item} not found")
def __setattr__(self, key, value):
if isinstance(value, dict):
value = DictToAttrRecursive(value)
super(DictToAttrRecursive, self).__setitem__(key, value)
super().__setattr__(key, value)
def __delattr__(self, item):
try:
del self[item]
except KeyError:
raise AttributeError(f"Attribute {item} not found")
ssl_model = cnhubert.get_model()
if is_half == True:
ssl_model = ssl_model.half().to(device)
else:
ssl_model = ssl_model.to(device)
resample_transform_dict = {}
def resample(audio_tensor, sr0,sr1):
global resample_transform_dict
key="%s-%s"%(sr0,sr1)
if key not in resample_transform_dict:
resample_transform_dict[key] = torchaudio.transforms.Resample(sr0, sr1).to(device)
return resample_transform_dict[key](audio_tensor)
###todo:put them to process_ckpt and modify my_save func (save sovits weights), gpt save weights use my_save in process_ckpt
# symbol_version-model_version-if_lora_v3
from process_ckpt import get_sovits_version_from_path_fast, load_sovits_new
v3v4set={"v3","v4"}
def change_sovits_weights(sovits_path, prompt_language=None, text_language=None):
global vq_model, hps, version, model_version, dict_language, if_lora_v3
version, model_version, if_lora_v3 = get_sovits_version_from_path_fast(sovits_path)
print(sovits_path,version, model_version, if_lora_v3)
is_exist=is_exist_s2gv3 if model_version=="v3"else is_exist_s2gv4
if if_lora_v3 == True and is_exist == False:
info = "GPT_SoVITS/pretrained_models/s2Gv3.pth" + i18n("SoVITS V3 底模缺失,无法加载相应 LoRA 权重")
gr.Warning(info)
raise FileExistsError(info)
dict_language = dict_language_v1 if version == "v1" else dict_language_v2
if prompt_language is not None and text_language is not None:
if prompt_language in list(dict_language.keys()):
prompt_text_update, prompt_language_update = (
{"__type__": "update"},
{"__type__": "update", "value": prompt_language},
)
else:
prompt_text_update = {"__type__": "update", "value": ""}
prompt_language_update = {"__type__": "update", "value": i18n("中文")}
if text_language in list(dict_language.keys()):
text_update, text_language_update = {"__type__": "update"}, {"__type__": "update", "value": text_language}
else:
text_update = {"__type__": "update", "value": ""}
text_language_update = {"__type__": "update", "value": i18n("中文")}
if model_version in v3v4set:
visible_sample_steps = True
visible_inp_refs = False
else:
visible_sample_steps = False
visible_inp_refs = True
yield (
{"__type__": "update", "choices": list(dict_language.keys())},
{"__type__": "update", "choices": list(dict_language.keys())},
prompt_text_update,
prompt_language_update,
text_update,
text_language_update,
{"__type__": "update", "visible": visible_sample_steps, "value": 32 if model_version=="v3"else 8,"choices":[4, 8, 16, 32,64,128]if model_version=="v3"else [4, 8, 16, 32]},
{"__type__": "update", "visible": visible_inp_refs},
{"__type__": "update", "value": False, "interactive": True if model_version not in v3v4set else False},
{"__type__": "update", "visible": True if model_version =="v3" else False},
{"__type__": "update", "value": i18n("模型加载中,请等待"), "interactive": False},
)
dict_s2 = load_sovits_new(sovits_path)
hps = dict_s2["config"]
hps = DictToAttrRecursive(hps)
hps.model.semantic_frame_rate = "25hz"
if "enc_p.text_embedding.weight" not in dict_s2["weight"]:
hps.model.version = "v2" # v3model,v2sybomls
elif dict_s2["weight"]["enc_p.text_embedding.weight"].shape[0] == 322:
hps.model.version = "v1"
else:
hps.model.version = "v2"
version = hps.model.version
# print("sovits版本:",hps.model.version)
if model_version not in v3v4set:
vq_model = SynthesizerTrn(
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model,
)
model_version = version
else:
vq_model = SynthesizerTrnV3(
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model,
)
if "pretrained" not in sovits_path:
try:
del vq_model.enc_q
except:
pass
if is_half == True:
vq_model = vq_model.half().to(device)
else:
vq_model = vq_model.to(device)
vq_model.eval()
if if_lora_v3 == False:
print("loading sovits_%s" % model_version, vq_model.load_state_dict(dict_s2["weight"], strict=False))
else:
path_sovits = path_sovits_v3 if model_version == "v3" else path_sovits_v4
print(
"loading sovits_%spretrained_G"%model_version,
vq_model.load_state_dict(load_sovits_new(path_sovits)["weight"], strict=False),
)
lora_rank = dict_s2["lora_rank"]
lora_config = LoraConfig(
target_modules=["to_k", "to_q", "to_v", "to_out.0"],
r=lora_rank,
lora_alpha=lora_rank,
init_lora_weights=True,
)
vq_model.cfm = get_peft_model(vq_model.cfm, lora_config)
print("loading sovits_%s_lora%s" % (model_version,lora_rank))
vq_model.load_state_dict(dict_s2["weight"], strict=False)
vq_model.cfm = vq_model.cfm.merge_and_unload()
# torch.save(vq_model.state_dict(),"merge_win.pth")
vq_model.eval()
yield (
{"__type__": "update", "choices": list(dict_language.keys())},
{"__type__": "update", "choices": list(dict_language.keys())},
prompt_text_update,
prompt_language_update,
text_update,
text_language_update,
{"__type__": "update", "visible": visible_sample_steps, "value":32 if model_version=="v3"else 8,"choices":[4, 8, 16, 32,64,128]if model_version=="v3"else [4, 8, 16, 32]},
{"__type__": "update", "visible": visible_inp_refs},
{"__type__": "update", "value": False, "interactive": True if model_version not in v3v4set else False},
{"__type__": "update", "visible": True if model_version =="v3" else False},
{"__type__": "update", "value": i18n("合成语音"), "interactive": True},
)
with open("./weight.json") as f:
data = f.read()
data = json.loads(data)
data["SoVITS"][version] = sovits_path
with open("./weight.json", "w") as f:
f.write(json.dumps(data))
try:
next(change_sovits_weights(sovits_path))
except:
pass
def change_gpt_weights(gpt_path):
global hz, max_sec, t2s_model, config
hz = 50
dict_s1 = torch.load(gpt_path, map_location="cpu")
config = dict_s1["config"]
max_sec = config["data"]["max_sec"]
t2s_model = Text2SemanticLightningModule(config, "****", is_train=False)
t2s_model.load_state_dict(dict_s1["weight"])
if is_half == True:
t2s_model = t2s_model.half()
t2s_model = t2s_model.to(device)
t2s_model.eval()
# total = sum([param.nelement() for param in t2s_model.parameters()])
# print("Number of parameter: %.2fM" % (total / 1e6))
with open("./weight.json") as f:
data = f.read()
data = json.loads(data)
data["GPT"][version] = gpt_path
with open("./weight.json", "w") as f:
f.write(json.dumps(data))
change_gpt_weights(gpt_path)
os.environ["HF_ENDPOINT"] = "https://hf-mirror.com"
import torch
now_dir = os.getcwd()
def init_bigvgan():
global bigvgan_model,hifigan_model
from BigVGAN import bigvgan
bigvgan_model = bigvgan.BigVGAN.from_pretrained(
"%s/GPT_SoVITS/pretrained_models/models--nvidia--bigvgan_v2_24khz_100band_256x" % (now_dir,),
use_cuda_kernel=False,
) # if True, RuntimeError: Ninja is required to load C++ extensions
# remove weight norm in the model and set to eval mode
bigvgan_model.remove_weight_norm()
bigvgan_model = bigvgan_model.eval()
if hifigan_model:
hifigan_model=hifigan_model.cpu()
hifigan_model=None
try:torch.cuda.empty_cache()
except:pass
if is_half == True:
bigvgan_model = bigvgan_model.half().to(device)
else:
bigvgan_model = bigvgan_model.to(device)
def init_hifigan():
global hifigan_model,bigvgan_model
hifigan_model = Generator(
initial_channel=100,
resblock="1",
resblock_kernel_sizes=[3, 7, 11],
resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
upsample_rates=[10, 6, 2, 2, 2],
upsample_initial_channel=512,
upsample_kernel_sizes=[20, 12, 4, 4, 4],
gin_channels=0, is_bias=True
)
hifigan_model.eval()
hifigan_model.remove_weight_norm()
state_dict_g = torch.load("%s/GPT_SoVITS/pretrained_models/gsv-v4-pretrained/vocoder.pth" % (now_dir,), map_location="cpu")
print("loading vocoder",hifigan_model.load_state_dict(state_dict_g))
if bigvgan_model:
bigvgan_model=bigvgan_model.cpu()
bigvgan_model=None
try:torch.cuda.empty_cache()
except:pass
if is_half == True:
hifigan_model = hifigan_model.half().to(device)
else:
hifigan_model = hifigan_model.to(device)
bigvgan_model=hifigan_model=None
if model_version=="v3":
init_bigvgan()
if model_version=="v4":
init_hifigan()
def get_spepc(hps, filename):
# audio = load_audio(filename, int(hps.data.sampling_rate))
audio, sampling_rate = librosa.load(filename, sr=int(hps.data.sampling_rate))
audio = torch.FloatTensor(audio)
maxx = audio.abs().max()
if maxx > 1:
audio /= min(2, maxx)
audio_norm = audio
audio_norm = audio_norm.unsqueeze(0)
spec = spectrogram_torch(
audio_norm,
hps.data.filter_length,
hps.data.sampling_rate,
hps.data.hop_length,
hps.data.win_length,
center=False,
)
return spec
def clean_text_inf(text, language, version):
language = language.replace("all_", "")
phones, word2ph, norm_text = clean_text(text, language, version)
phones = cleaned_text_to_sequence(phones, version)
return phones, word2ph, norm_text
dtype = torch.float16 if is_half == True else torch.float32
def get_bert_inf(phones, word2ph, norm_text, language):
language = language.replace("all_", "")
if language == "zh":
bert = get_bert_feature(norm_text, word2ph).to(device) # .to(dtype)
else:
bert = torch.zeros(
(1024, len(phones)),
dtype=torch.float16 if is_half == True else torch.float32,
).to(device)
return bert
splits = {
",",
"。",
"?",
"!",
",",
".",
"?",
"!",
"~",
":",
":",
"—",
"…",
}
def get_first(text):
pattern = "[" + "".join(re.escape(sep) for sep in splits) + "]"
text = re.split(pattern, text)[0].strip()
return text
from text import chinese
def get_phones_and_bert(text, language, version, final=False):
if language in {"en", "all_zh", "all_ja", "all_ko", "all_yue"}:
formattext = text
while " " in formattext:
formattext = formattext.replace(" ", " ")
if language == "all_zh":
if re.search(r"[A-Za-z]", formattext):
formattext = re.sub(r"[a-z]", lambda x: x.group(0).upper(), formattext)
formattext = chinese.mix_text_normalize(formattext)
return get_phones_and_bert(formattext, "zh", version)
else:
phones, word2ph, norm_text = clean_text_inf(formattext, language, version)
bert = get_bert_feature(norm_text, word2ph).to(device)
elif language == "all_yue" and re.search(r"[A-Za-z]", formattext):
formattext = re.sub(r"[a-z]", lambda x: x.group(0).upper(), formattext)
formattext = chinese.mix_text_normalize(formattext)
return get_phones_and_bert(formattext, "yue", version)
else:
phones, word2ph, norm_text = clean_text_inf(formattext, language, version)
bert = torch.zeros(
(1024, len(phones)),
dtype=torch.float16 if is_half == True else torch.float32,
).to(device)
elif language in {"zh", "ja", "ko", "yue", "auto", "auto_yue"}:
textlist = []
langlist = []
if language == "auto":
for tmp in LangSegmenter.getTexts(text):
langlist.append(tmp["lang"])
textlist.append(tmp["text"])
elif language == "auto_yue":
for tmp in LangSegmenter.getTexts(text):
if tmp["lang"] == "zh":
tmp["lang"] = "yue"
langlist.append(tmp["lang"])
textlist.append(tmp["text"])
else:
for tmp in LangSegmenter.getTexts(text):
if tmp["lang"] == "en":
langlist.append(tmp["lang"])
else:
# 因无法区别中日韩文汉字,以用户输入为准
langlist.append(language)
textlist.append(tmp["text"])
print(textlist)
print(langlist)
phones_list = []
bert_list = []
norm_text_list = []
for i in range(len(textlist)):
lang = langlist[i]
phones, word2ph, norm_text = clean_text_inf(textlist[i], lang, version)
bert = get_bert_inf(phones, word2ph, norm_text, lang)
phones_list.append(phones)
norm_text_list.append(norm_text)
bert_list.append(bert)
bert = torch.cat(bert_list, dim=1)
phones = sum(phones_list, [])
norm_text = "".join(norm_text_list)
if not final and len(phones) < 6:
return get_phones_and_bert("." + text, language, version, final=True)
return phones, bert.to(dtype), norm_text
from module.mel_processing import mel_spectrogram_torch, spectrogram_torch
spec_min = -12
spec_max = 2
def norm_spec(x):
return (x - spec_min) / (spec_max - spec_min) * 2 - 1
def denorm_spec(x):
return (x + 1) / 2 * (spec_max - spec_min) + spec_min
mel_fn = lambda x: mel_spectrogram_torch(
x,
**{
"n_fft": 1024,
"win_size": 1024,
"hop_size": 256,
"num_mels": 100,
"sampling_rate": 24000,
"fmin": 0,
"fmax": None,
"center": False,
},
)
mel_fn_v4 = lambda x: mel_spectrogram_torch(
x,
**{
"n_fft": 1280,
"win_size": 1280,
"hop_size": 320,
"num_mels": 100,
"sampling_rate": 32000,
"fmin": 0,
"fmax": None,
"center": False,
},
)
def merge_short_text_in_array(texts, threshold):
if (len(texts)) < 2:
return texts
result = []
text = ""
for ele in texts:
text += ele
if len(text) >= threshold:
result.append(text)
text = ""
if len(text) > 0:
if len(result) == 0:
result.append(text)
else:
result[len(result) - 1] += text
return result
sr_model = None
def audio_sr(audio, sr):
global sr_model
if sr_model == None:
from tools.audio_sr import AP_BWE
try:
sr_model = AP_BWE(device, DictToAttrRecursive)
except FileNotFoundError:
gr.Warning(i18n("你没有下载超分模型的参数,因此不进行超分。如想超分请先参照教程把文件下载好"))
return audio.cpu().detach().numpy(), sr
return sr_model(audio, sr)
##ref_wav_path+prompt_text+prompt_language+text(单个)+text_language+top_k+top_p+temperature
# cache_tokens={}#暂未实现清理机制
cache = {}
def get_tts_wav(
ref_wav_path,
prompt_text,
prompt_language,
text,
text_language,
how_to_cut=i18n("不切"),
top_k=20,
top_p=0.6,
temperature=0.6,
ref_free=False,
speed=1,
if_freeze=False,
inp_refs=None,
sample_steps=8,
if_sr=False,
pause_second=0.3,
):
global cache
if ref_wav_path:
pass
else:
gr.Warning(i18n("请上传参考音频"))
if text:
pass
else:
gr.Warning(i18n("请填入推理文本"))
t = []
if prompt_text is None or len(prompt_text) == 0:
ref_free = True
if model_version in v3v4set:
ref_free = False # s2v3暂不支持ref_free
else:
if_sr = False
t0 = ttime()
prompt_language = dict_language[prompt_language]
text_language = dict_language[text_language]
if not ref_free:
prompt_text = prompt_text.strip("\n")
if prompt_text[-1] not in splits:
prompt_text += "。" if prompt_language != "en" else "."
print(i18n("实际输入的参考文本:"), prompt_text)
text = text.strip("\n")
# if (text[0] not in splits and len(get_first(text)) < 4): text = "。" + text if text_language != "en" else "." + text
print(i18n("实际输入的目标文本:"), text)
zero_wav = np.zeros(
int(hps.data.sampling_rate * pause_second),
dtype=np.float16 if is_half == True else np.float32,
)
zero_wav_torch = torch.from_numpy(zero_wav)
if is_half == True:
zero_wav_torch = zero_wav_torch.half().to(device)
else:
zero_wav_torch = zero_wav_torch.to(device)
if not ref_free:
with torch.no_grad():
wav16k, sr = librosa.load(ref_wav_path, sr=16000)
if wav16k.shape[0] > 160000 or wav16k.shape[0] < 48000:
gr.Warning(i18n("参考音频在3~10秒范围外,请更换!"))
raise OSError(i18n("参考音频在3~10秒范围外,请更换!"))
wav16k = torch.from_numpy(wav16k)
if is_half == True:
wav16k = wav16k.half().to(device)
else:
wav16k = wav16k.to(device)
wav16k = torch.cat([wav16k, zero_wav_torch])
ssl_content = ssl_model.model(wav16k.unsqueeze(0))["last_hidden_state"].transpose(1, 2) # .float()
codes = vq_model.extract_latent(ssl_content)
prompt_semantic = codes[0, 0]
prompt = prompt_semantic.unsqueeze(0).to(device)
t1 = ttime()
t.append(t1 - t0)
if how_to_cut == i18n("凑四句一切"):
text = cut1(text)
elif how_to_cut == i18n("凑50字一切"):
text = cut2(text)
elif how_to_cut == i18n("按中文句号。切"):
text = cut3(text)
elif how_to_cut == i18n("按英文句号.切"):
text = cut4(text)
elif how_to_cut == i18n("按标点符号切"):
text = cut5(text)
while "\n\n" in text:
text = text.replace("\n\n", "\n")
print(i18n("实际输入的目标文本(切句后):"), text)
texts = text.split("\n")
texts = process_text(texts)
texts = merge_short_text_in_array(texts, 5)
audio_opt = []
###s2v3暂不支持ref_free
if not ref_free:
phones1, bert1, norm_text1 = get_phones_and_bert(prompt_text, prompt_language, version)
for i_text, text in enumerate(texts):
# 解决输入目标文本的空行导致报错的问题
if len(text.strip()) == 0:
continue
if text[-1] not in splits:
text += "。" if text_language != "en" else "."
print(i18n("实际输入的目标文本(每句):"), text)
phones2, bert2, norm_text2 = get_phones_and_bert(text, text_language, version)
print(i18n("前端处理后的文本(每句):"), norm_text2)
if not ref_free:
bert = torch.cat([bert1, bert2], 1)
all_phoneme_ids = torch.LongTensor(phones1 + phones2).to(device).unsqueeze(0)
else:
bert = bert2
all_phoneme_ids = torch.LongTensor(phones2).to(device).unsqueeze(0)
bert = bert.to(device).unsqueeze(0)
all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device)
t2 = ttime()
# cache_key="%s-%s-%s-%s-%s-%s-%s-%s"%(ref_wav_path,prompt_text,prompt_language,text,text_language,top_k,top_p,temperature)
# print(cache.keys(),if_freeze)
if i_text in cache and if_freeze == True:
pred_semantic = cache[i_text]
else:
with torch.no_grad():
pred_semantic, idx = t2s_model.model.infer_panel(
all_phoneme_ids,
all_phoneme_len,
None if ref_free else prompt,
bert,
# prompt_phone_len=ph_offset,
top_k=top_k,
top_p=top_p,
temperature=temperature,
early_stop_num=hz * max_sec,
)
pred_semantic = pred_semantic[:, -idx:].unsqueeze(0)
cache[i_text] = pred_semantic
t3 = ttime()
###v3不存在以下逻辑和inp_refs
if model_version not in v3v4set:
refers = []
if inp_refs:
for path in inp_refs:
try:
refer = get_spepc(hps, path.name).to(dtype).to(device)
refers.append(refer)
except:
traceback.print_exc()
if len(refers) == 0:
refers = [get_spepc(hps, ref_wav_path).to(dtype).to(device)]
audio = vq_model.decode(
pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refers, speed=speed
)[0][0] # .cpu().detach().numpy()
else:
refer = get_spepc(hps, ref_wav_path).to(device).to(dtype)
phoneme_ids0 = torch.LongTensor(phones1).to(device).unsqueeze(0)
phoneme_ids1 = torch.LongTensor(phones2).to(device).unsqueeze(0)
# print(11111111, phoneme_ids0, phoneme_ids1)
fea_ref, ge = vq_model.decode_encp(prompt.unsqueeze(0), phoneme_ids0, refer)
ref_audio, sr = torchaudio.load(ref_wav_path)
ref_audio = ref_audio.to(device).float()
if ref_audio.shape[0] == 2:
ref_audio = ref_audio.mean(0).unsqueeze(0)
tgt_sr=24000 if model_version=="v3"else 32000
if sr != tgt_sr:
ref_audio = resample(ref_audio, sr,tgt_sr)
# print("ref_audio",ref_audio.abs().mean())
mel2 = mel_fn(ref_audio)if model_version=="v3"else mel_fn_v4(ref_audio)
mel2 = norm_spec(mel2)
T_min = min(mel2.shape[2], fea_ref.shape[2])
mel2 = mel2[:, :, :T_min]
fea_ref = fea_ref[:, :, :T_min]
Tref=468 if model_version=="v3"else 500
Tchunk=934 if model_version=="v3"else 1000
if T_min > Tref:
mel2 = mel2[:, :, -Tref:]
fea_ref = fea_ref[:, :, -Tref:]
T_min = Tref
chunk_len = Tchunk - T_min
mel2 = mel2.to(dtype)
fea_todo, ge = vq_model.decode_encp(pred_semantic, phoneme_ids1, refer, ge, speed)
cfm_resss = []
idx = 0
while 1:
fea_todo_chunk = fea_todo[:, :, idx : idx + chunk_len]
if fea_todo_chunk.shape[-1] == 0:
break
idx += chunk_len
fea = torch.cat([fea_ref, fea_todo_chunk], 2).transpose(2, 1)
cfm_res = vq_model.cfm.inference(
fea, torch.LongTensor([fea.size(1)]).to(fea.device), mel2, sample_steps, inference_cfg_rate=0
)
cfm_res = cfm_res[:, :, mel2.shape[2] :]
mel2 = cfm_res[:, :, -T_min:]
fea_ref = fea_todo_chunk[:, :, -T_min:]
cfm_resss.append(cfm_res)
cfm_res = torch.cat(cfm_resss, 2)
cfm_res = denorm_spec(cfm_res)
if model_version=="v3":
if bigvgan_model == None:
init_bigvgan()
else:#v4
if hifigan_model == None:
init_hifigan()
vocoder_model=bigvgan_model if model_version=="v3"else hifigan_model
with torch.inference_mode():
wav_gen = vocoder_model(cfm_res)
audio = wav_gen[0][0] # .cpu().detach().numpy()
max_audio = torch.abs(audio).max() # 简单防止16bit爆音
if max_audio > 1:
audio = audio / max_audio
audio_opt.append(audio)
audio_opt.append(zero_wav_torch) # zero_wav
t4 = ttime()
t.extend([t2 - t1, t3 - t2, t4 - t3])
t1 = ttime()
print("%.3f\t%.3f\t%.3f\t%.3f" % (t[0], sum(t[1::3]), sum(t[2::3]), sum(t[3::3])))
audio_opt = torch.cat(audio_opt, 0) # np.concatenate
if model_version in {"v1","v2"}:opt_sr=32000
elif model_version=="v3":opt_sr=24000
else:opt_sr=48000#v4
if if_sr == True and opt_sr == 24000:
print(i18n("音频超分中"))
audio_opt, opt_sr = audio_sr(audio_opt.unsqueeze(0), opt_sr)
max_audio = np.abs(audio_opt).max()
if max_audio > 1:
audio_opt /= max_audio
else:
audio_opt = audio_opt.cpu().detach().numpy()
yield opt_sr, (audio_opt * 32767).astype(np.int16)
def split(todo_text):
todo_text = todo_text.replace("……", "。").replace("——", ",")
if todo_text[-1] not in splits:
todo_text += "。"
i_split_head = i_split_tail = 0
len_text = len(todo_text)
todo_texts = []
while 1:
if i_split_head >= len_text:
break # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入
if todo_text[i_split_head] in splits:
i_split_head += 1
todo_texts.append(todo_text[i_split_tail:i_split_head])
i_split_tail = i_split_head
else:
i_split_head += 1
return todo_texts
def cut1(inp):
inp = inp.strip("\n")
inps = split(inp)
split_idx = list(range(0, len(inps), 4))
split_idx[-1] = None
if len(split_idx) > 1:
opts = []
for idx in range(len(split_idx) - 1):
opts.append("".join(inps[split_idx[idx] : split_idx[idx + 1]]))
else:
opts = [inp]
opts = [item for item in opts if not set(item).issubset(punctuation)]
return "\n".join(opts)
def cut2(inp):
inp = inp.strip("\n")
inps = split(inp)
if len(inps) < 2:
return inp
opts = []
summ = 0
tmp_str = ""
for i in range(len(inps)):
summ += len(inps[i])
tmp_str += inps[i]
if summ > 50:
summ = 0
opts.append(tmp_str)
tmp_str = ""
if tmp_str != "":
opts.append(tmp_str)
# print(opts)
if len(opts) > 1 and len(opts[-1]) < 50: ##如果最后一个太短了,和前一个合一起
opts[-2] = opts[-2] + opts[-1]
opts = opts[:-1]
opts = [item for item in opts if not set(item).issubset(punctuation)]
return "\n".join(opts)
def cut3(inp):
inp = inp.strip("\n")
opts = ["%s" % item for item in inp.strip("。").split("。")]
opts = [item for item in opts if not set(item).issubset(punctuation)]
return "\n".join(opts)
def cut4(inp):
inp = inp.strip("\n")
opts = re.split(r"(?<!\d)\.(?!\d)", inp.strip("."))
opts = [item for item in opts if not set(item).issubset(punctuation)]
return "\n".join(opts)
# contributed by https://github.com/AI-Hobbyist/GPT-SoVITS/blob/main/GPT_SoVITS/inference_webui.py
def cut5(inp):
inp = inp.strip("\n")
punds = {",", ".", ";", "?", "!", "、", ",", "。", "?", "!", ";", ":", "…"}
mergeitems = []
items = []
for i, char in enumerate(inp):
if char in punds:
if char == "." and i > 0 and i < len(inp) - 1 and inp[i - 1].isdigit() and inp[i + 1].isdigit():
items.append(char)
else:
items.append(char)
mergeitems.append("".join(items))
items = []
else:
items.append(char)
if items:
mergeitems.append("".join(items))
opt = [item for item in mergeitems if not set(item).issubset(punds)]
return "\n".join(opt)
def custom_sort_key(s):
# 使用正则表达式提取字符串中的数字部分和非数字部分
parts = re.split("(\d+)", s)
# 将数字部分转换为整数,非数字部分保持不变
parts = [int(part) if part.isdigit() else part for part in parts]
return parts
def process_text(texts):
_text = []
if all(text in [None, " ", "\n", ""] for text in texts):
raise ValueError(i18n("请输入有效文本"))
for text in texts:
if text in [None, " ", ""]:
pass
else:
_text.append(text)
return _text
def change_choices():
SoVITS_names, GPT_names = get_weights_names(GPT_weight_root, SoVITS_weight_root)
return {"choices": sorted(SoVITS_names, key=custom_sort_key), "__type__": "update"}, {
"choices": sorted(GPT_names, key=custom_sort_key),
"__type__": "update",
}
SoVITS_weight_root = ["SoVITS_weights", "SoVITS_weights_v2", "SoVITS_weights_v3", "SoVITS_weights_v4"]
GPT_weight_root = ["GPT_weights", "GPT_weights_v2", "GPT_weights_v3", "GPT_weights_v4"]
for path in SoVITS_weight_root + GPT_weight_root:
os.makedirs(path, exist_ok=True)
def get_weights_names(GPT_weight_root, SoVITS_weight_root):
SoVITS_names = [i for i in pretrained_sovits_name]
for path in SoVITS_weight_root:
for name in os.listdir(path):
if name.endswith(".pth"):
SoVITS_names.append("%s/%s" % (path, name))
GPT_names = [i for i in pretrained_gpt_name]
for path in GPT_weight_root:
for name in os.listdir(path):
if name.endswith(".ckpt"):
GPT_names.append("%s/%s" % (path, name))
return SoVITS_names, GPT_names
SoVITS_names, GPT_names = get_weights_names(GPT_weight_root, SoVITS_weight_root)
def html_center(text, label="p"):
return f"""<div style="text-align: center; margin: 100; padding: 50;">
<{label} style="margin: 0; padding: 0;">{text}</{label}>
</div>"""
def html_left(text, label="p"):
return f"""<div style="text-align: left; margin: 0; padding: 0;">
<{label} style="margin: 0; padding: 0;">{text}</{label}>
</div>"""
with gr.Blocks(title="GPT-SoVITS WebUI") as app:
gr.Markdown(
value=i18n("本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责.")
+ "<br>"
+ i18n("如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录LICENSE.")
)
with gr.Group():
gr.Markdown(html_center(i18n("模型切换"), "h3"))
with gr.Row():
GPT_dropdown = gr.Dropdown(
label=i18n("GPT模型列表"),
choices=sorted(GPT_names, key=custom_sort_key),
value=gpt_path,
interactive=True,
scale=14,
)
SoVITS_dropdown = gr.Dropdown(
label=i18n("SoVITS模型列表"),
choices=sorted(SoVITS_names, key=custom_sort_key),
value=sovits_path,
interactive=True,
scale=14,
)
refresh_button = gr.Button(i18n("刷新模型路径"), variant="primary", scale=14)
refresh_button.click(fn=change_choices, inputs=[], outputs=[SoVITS_dropdown, GPT_dropdown])
gr.Markdown(html_center(i18n("*请上传并填写参考信息"), "h3"))
with gr.Row():
inp_ref = gr.Audio(label=i18n("请上传3~10秒内参考音频,超过会报错!"), type="filepath", scale=13)
with gr.Column(scale=13):
ref_text_free = gr.Checkbox(
label=i18n("开启无参考文本模式。不填参考文本亦相当于开启。")
+ i18n("v3暂不支持该模式,使用了会报错。"),
value=False,
interactive=True if model_version not in v3v4set else False,
show_label=True,
scale=1,
)
gr.Markdown(
html_left(
i18n("使用无参考文本模式时建议使用微调的GPT")
+ "<br>"
+ i18n("听不清参考音频说的啥(不晓得写啥)可以开。开启后无视填写的参考文本。")
)
)
prompt_text = gr.Textbox(label=i18n("参考音频的文本"), value="", lines=5, max_lines=5, scale=1)
with gr.Column(scale=14):
prompt_language = gr.Dropdown(
label=i18n("参考音频的语种"),
choices=list(dict_language.keys()),
value=i18n("中文"),
)
inp_refs = (
gr.File(
label=i18n(
"可选项:通过拖拽多个文件上传多个参考音频(建议同性),平均融合他们的音色。如不填写此项,音色由左侧单个参考音频控制。如是微调模型,建议参考音频全部在微调训练集音色内,底模不用管。"
),
file_count="multiple",
)
if model_version not in v3v4set
else gr.File(
label=i18n(
"可选项:通过拖拽多个文件上传多个参考音频(建议同性),平均融合他们的音色。如不填写此项,音色由左侧单个参考音频控制。如是微调模型,建议参考音频全部在微调训练集音色内,底模不用管。"
),
file_count="multiple",
visible=False,
)
)
sample_steps = (
gr.Radio(
label=i18n("采样步数,如果觉得电,提高试试,如果觉得慢,降低试试"),
value=32 if model_version=="v3"else 8,
choices=[4, 8, 16, 32,64,128]if model_version=="v3"else [4, 8, 16, 32,64,128],
visible=True,
)
if model_version in v3v4set
else gr.Radio(
label=i18n("采样步数,如果觉得电,提高试试,如果觉得慢,降低试试"),
choices=[4, 8, 16, 32,64,128]if model_version=="v3"else [4, 8, 16, 32,64,128],
visible=False,
value=32 if model_version=="v3"else 8,
)
)
if_sr_Checkbox = gr.Checkbox(
label=i18n("v3输出如果觉得闷可以试试开超分"),
value=False,
interactive=True,
show_label=True,
visible=False if model_version !="v3" else True,
)
gr.Markdown(html_center(i18n("*请填写需要合成的目标文本和语种模式"), "h3"))
with gr.Row():
with gr.Column(scale=13):
text = gr.Textbox(label=i18n("需要合成的文本"), value="", lines=26, max_lines=26)
with gr.Column(scale=7):
text_language = gr.Dropdown(
label=i18n("需要合成的语种") + i18n(".限制范围越小判别效果越好。"),
choices=list(dict_language.keys()),
value=i18n("中文"),
scale=1,
)
how_to_cut = gr.Dropdown(
label=i18n("怎么切"),
choices=[
i18n("不切"),
i18n("凑四句一切"),
i18n("凑50字一切"),
i18n("按中文句号。切"),
i18n("按英文句号.切"),
i18n("按标点符号切"),
],
value=i18n("凑四句一切"),
interactive=True,
scale=1,
)
gr.Markdown(value=html_center(i18n("语速调整,高为更快")))
if_freeze = gr.Checkbox(
label=i18n("是否直接对上次合成结果调整语速和音色。防止随机性。"),
value=False,
interactive=True,
show_label=True,
scale=1,
)
with gr.Row():
speed = gr.Slider(
minimum=0.6, maximum=1.65, step=0.05, label=i18n("语速"), value=1, interactive=True, scale=1
)
pause_second_slider = gr.Slider(
minimum=0.1,
maximum=0.5,
step=0.01,
label=i18n("句间停顿秒数"),
value=0.3,
interactive=True,
scale=1,
)
gr.Markdown(html_center(i18n("GPT采样参数(无参考文本时不要太低。不懂就用默认):")))
top_k = gr.Slider(
minimum=1, maximum=100, step=1, label=i18n("top_k"), value=15, interactive=True, scale=1
)
top_p = gr.Slider(
minimum=0, maximum=1, step=0.05, label=i18n("top_p"), value=1, interactive=True, scale=1
)
temperature = gr.Slider(
minimum=0, maximum=1, step=0.05, label=i18n("temperature"), value=1, interactive=True, scale=1
)
# with gr.Column():
# gr.Markdown(value=i18n("手工调整音素。当音素框不为空时使用手工音素输入推理,无视目标文本框。"))
# phoneme=gr.Textbox(label=i18n("音素框"), value="")
# get_phoneme_button = gr.Button(i18n("目标文本转音素"), variant="primary")
with gr.Row():
inference_button = gr.Button(value=i18n("合成语音"), variant="primary", size="lg", scale=25)
output = gr.Audio(label=i18n("输出的语音"), scale=14)
inference_button.click(
get_tts_wav,
[
inp_ref,
prompt_text,
prompt_language,
text,
text_language,
how_to_cut,
top_k,
top_p,
temperature,
ref_text_free,
speed,
if_freeze,
inp_refs,
sample_steps,
if_sr_Checkbox,
pause_second_slider,
],
[output],
)
SoVITS_dropdown.change(
change_sovits_weights,
[SoVITS_dropdown, prompt_language, text_language],
[
prompt_language,
text_language,
prompt_text,
prompt_language,
text,
text_language,
sample_steps,
inp_refs,
ref_text_free,
if_sr_Checkbox,
inference_button,
],
)
GPT_dropdown.change(change_gpt_weights, [GPT_dropdown], [])
# gr.Markdown(value=i18n("文本切分工具。太长的文本合成出来效果不一定好,所以太长建议先切。合成会根据文本的换行分开合成再拼起来。"))
# with gr.Row():
# text_inp = gr.Textbox(label=i18n("需要合成的切分前文本"), value="")
# button1 = gr.Button(i18n("凑四句一切"), variant="primary")
# button2 = gr.Button(i18n("凑50字一切"), variant="primary")
# button3 = gr.Button(i18n("按中文句号。切"), variant="primary")
# button4 = gr.Button(i18n("按英文句号.切"), variant="primary")
# button5 = gr.Button(i18n("按标点符号切"), variant="primary")
# text_opt = gr.Textbox(label=i18n("切分后文本"), value="")
# button1.click(cut1, [text_inp], [text_opt])
# button2.click(cut2, [text_inp], [text_opt])
# button3.click(cut3, [text_inp], [text_opt])
# button4.click(cut4, [text_inp], [text_opt])
# button5.click(cut5, [text_inp], [text_opt])
# gr.Markdown(html_center(i18n("后续将支持转音素、手工修改音素、语音合成分步执行。")))
if __name__ == "__main__":
app.queue().launch( # concurrency_count=511, max_size=1022
server_name="0.0.0.0",
inbrowser=True,
share=True,
server_port=infer_ttswebui,
quiet=True,
)