|
from packaging import version |
|
import torch |
|
from torch import nn, einsum |
|
import torch.nn.functional as F |
|
|
|
|
|
def exists(val): |
|
return val is not None |
|
|
|
|
|
def default(v, d): |
|
return v if exists(v) else d |
|
|
|
|
|
class Attend(nn.Module): |
|
def __init__(self, dropout=0.0, flash=False, scale=None): |
|
super().__init__() |
|
self.scale = scale |
|
self.dropout = dropout |
|
self.attn_dropout = nn.Dropout(dropout) |
|
|
|
self.flash = flash |
|
assert not (flash and version.parse(torch.__version__) < version.parse("2.0.0")), ( |
|
"in order to use flash attention, you must be using pytorch 2.0 or above" |
|
) |
|
|
|
def flash_attn(self, q, k, v): |
|
|
|
|
|
if exists(self.scale): |
|
default_scale = q.shape[-1] ** -0.5 |
|
q = q * (self.scale / default_scale) |
|
|
|
|
|
|
|
return F.scaled_dot_product_attention(q, k, v, dropout_p=self.dropout if self.training else 0.0) |
|
|
|
def forward(self, q, k, v): |
|
""" |
|
einstein notation |
|
b - batch |
|
h - heads |
|
n, i, j - sequence length (base sequence length, source, target) |
|
d - feature dimension |
|
""" |
|
|
|
|
|
|
|
scale = default(self.scale, q.shape[-1] ** -0.5) |
|
|
|
if self.flash: |
|
return self.flash_attn(q, k, v) |
|
|
|
|
|
|
|
sim = einsum("b h i d, b h j d -> b h i j", q, k) * scale |
|
|
|
|
|
|
|
attn = sim.softmax(dim=-1) |
|
attn = self.attn_dropout(attn) |
|
|
|
|
|
|
|
out = einsum("b h i j, b h j d -> b h i d", attn, v) |
|
|
|
return out |
|
|