File size: 75,452 Bytes
d5eed08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
"""
2025.3.12
2025.3.14
4.48.3
0.15.2
__UNSLOTH_VERSIONING__
"""
from torch import Tensor
import torch
import torch.nn as nn
from torch.nn import functional as F
from trl.trainer.cpo_trainer import (Any, AutoModelForCausalLM, BaseImageProcessor, CPOConfig, CPOTrainer, Callable, DPODataCollatorWithPadding, DataCollator, DataLoader, Dataset, EvalLoopOutput, F, FeatureExtractionMixin, Literal, Optional, PartialState, PeftModel, PreTrainedModel, PreTrainedTokenizerBase, ProcessorMixin, Trainer, TrainerCallback, Union, add_bos_token_if_needed, add_eos_token_if_needed, amp, defaultdict, disable_dropout_in_model, generate_model_card, get_comet_experiment_url, inspect, is_comet_available, is_peft_available, is_torch_fx_proxy, is_wandb_available, log_table_to_comet_experiment, maybe_apply_chat_template, maybe_extract_prompt, nn, np, nullcontext, os, pad_to_length, pd, peft_module_casting_to_bf16, prepare_model_for_kbit_training, random, textwrap, torch, transformers, version, wandb, warnings)


import os
from typing import *
from dataclasses import dataclass, field
from packaging.version import Version
import torch
import numpy as np
from contextlib import nullcontext
from torch.nn import functional as F
from transformers import DataCollatorForSeq2Seq, DataCollatorForLanguageModeling

torch_compile_options = {
    "epilogue_fusion"   : True,
    "max_autotune"      : False,
    "shape_padding"     : True,
    "trace.enabled"     : False,
    "triton.cudagraphs" : False,
}

@torch.compile(dynamic = True, fullgraph = True, options = torch_compile_options,)
def selective_log_softmax(logits, index):
    logits = logits.to(torch.float32)
    selected_logits = torch.gather(logits, dim = -1, index = index.unsqueeze(-1)).squeeze(-1)
    # loop to reduce peak mem consumption
    # logsumexp_values = torch.stack([torch.logsumexp(lg, dim=-1) for lg in logits])
    logsumexp_values = torch.logsumexp(logits, dim = -1)
    per_token_logps = selected_logits - logsumexp_values  # log_softmax(x_i) = x_i - logsumexp(x)
    return per_token_logps
@dataclass
class UnslothCPOConfig(CPOConfig):
    """
    
    Configuration class for the [`CPOTrainer`].

    Using [`~transformers.HfArgumentParser`] we can turn this class into
    [argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the
    command line.

    Parameters:
        learning_rate (`float`, *optional*, defaults to `1e-6`):
            Initial learning rate for [`AdamW`] optimizer. The default value replaces that of
            [`~transformers.TrainingArguments`].
        max_length (`int` or `None`, *optional*, defaults to `1024`):
            Maximum length of the sequences (prompt + completion) in the batch. This argument is required if you want
            to use the default data collator.
        max_prompt_length (`int` or `None`, *optional*, defaults to `512`):
            Maximum length of the prompt. This argument is required if you want to use the default data collator.
        max_completion_length (`int` or `None`, *optional*, defaults to `None`):
            Maximum length of the completion. This argument is required if you want to use the default data collator
            and your model is an encoder-decoder.
        beta (`float`, *optional*, defaults to `0.1`):
            Parameter controlling the deviation from the reference model. Higher β means less deviation from the
            reference model. For the IPO loss (`loss_type="ipo"`), β is the regularization parameter denoted by τ in
            the [paper](https://huggingface.co/papers/2310.12036).
        label_smoothing (`float`, *optional*, defaults to `0.0`):
            Label smoothing factor. This argument is required if you want to use the default data collator.
        loss_type (`str`, *optional*, defaults to `"sigmoid"`):
            Type of loss to use. Possible values are:

                - `"sigmoid"`: sigmoid loss from the original [DPO](https://huggingface.co/papers/2305.18290) paper.
                - `"hinge"`: hinge loss on the normalized likelihood from the [SLiC](https://huggingface.co/papers/2305.10425) paper.
                - `"ipo"`: IPO loss from the [IPO](https://huggingface.co/papers/2310.12036) paper.
                - `"simpo"`: SimPO loss from the [SimPO](https://huggingface.co/papers/2405.14734) paper.

        disable_dropout (`bool`, *optional*, defaults to `True`):
            Whether to disable dropout in the model.
        cpo_alpha (`float`, *optional*, defaults to `1.0`):
            Weight of the BC regularizer in CPO training.
        simpo_gamma (`float`, *optional*, defaults to `0.5`):
            Target reward margin for the SimPO loss, used only when the `loss_type="simpo"`.
        label_pad_token_id (`int`, *optional*, defaults to `-100`):
            Label pad token id. This argument is required if you want to use the default data collator.
        padding_value (`int` or `None`, *optional*, defaults to `None`):
            Padding value to use. If `None`, the padding value of the tokenizer is used.
        truncation_mode (`str`,*optional*,  defaults to `"keep_end"`):
            Truncation mode to use when the prompt is too long. Possible values are `"keep_end"` or `"keep_start"`.
            This argument is required if you want to use the default data collator.
        generate_during_eval (`bool`, *optional*, defaults to `False`):
            If `True`, generates and logs completions from the model to W&B or Comet during evaluation.
        is_encoder_decoder (`bool` or `None`, *optional*, defaults to `None`):
            When using the `model_init` argument (callable) to instantiate the model instead of the `model` argument,
            you need to specify if the model returned by the callable is an encoder-decoder model.
        model_init_kwargs (`dict[str, Any]` or `None`, *optional*, defaults to `None`):
            Keyword arguments to pass to `AutoModelForCausalLM.from_pretrained` when instantiating the model from a
            string.
        dataset_num_proc (`int` or `None`, *optional*, defaults to `None`):
            Number of processes to use for processing the dataset.
    
    """
    vllm_sampling_params: Optional[Any] = field(
        default = None,
        metadata = {'help': 'vLLM SamplingParams'},
    )
    unsloth_num_chunks : Optional[int] = field(
        default = -1,
        metadata = {'help': 'Chunk size to reduce memory usage. -1 is most efficient.'},
    )
    def __init__(
        self,
        output_dir = None,
        overwrite_output_dir = None,
        do_train = False,
        do_eval = False,
        do_predict = False,
        eval_strategy = 'no',
        prediction_loss_only = False,
        per_device_train_batch_size = 4,
        per_device_eval_batch_size = 4,
        per_gpu_train_batch_size = None,
        per_gpu_eval_batch_size = None,
        gradient_accumulation_steps = 2,
        eval_accumulation_steps = 2,
        eval_delay = 0,
        torch_empty_cache_steps = 250,
        learning_rate = 5e-05,
        weight_decay = 0.01,
        adam_beta1 = 0.9,
        adam_beta2 = 0.999,
        adam_epsilon = 1e-08,
        max_grad_norm = 1.0,
        num_train_epochs = 3.0,
        max_steps = -1,
        lr_scheduler_type = 'linear',
        warmup_ratio = 0.1,
        warmup_steps = 0,
        log_level = 'passive',
        log_level_replica = 'warning',
        log_on_each_node = True,
        logging_dir = None,
        logging_strategy = 'steps',
        logging_first_step = False,
        logging_steps = 1,
        logging_nan_inf_filter = False,
        save_strategy = 'steps',
        save_steps = 500,
        save_total_limit = None,
        save_safetensors = True,
        save_on_each_node = False,
        save_only_model = False,
        restore_callback_states_from_checkpoint = False,
        no_cuda = False,
        use_cpu = False,
        use_mps_device = False,
        seed = 3407,
        data_seed = 3407,
        jit_mode_eval = False,
        use_ipex = False,
        bf16 = False,
        fp16 = False,
        fp16_opt_level = 'O1',
        half_precision_backend = 'auto',
        bf16_full_eval = False,
        fp16_full_eval = False,
        tf32 = None,
        local_rank = -1,
        ddp_backend = None,
        tpu_num_cores = None,
        tpu_metrics_debug = False,
        debug = '',
        dataloader_drop_last = False,
        eval_steps = None,
        dataloader_num_workers = 0,
        dataloader_prefetch_factor = None,
        past_index = -1,
        run_name = None,
        disable_tqdm = None,
        remove_unused_columns = True,
        label_names = None,
        load_best_model_at_end = False,
        metric_for_best_model = None,
        greater_is_better = None,
        ignore_data_skip = False,
        fsdp = '',
        fsdp_min_num_params = 0,
        fsdp_config = None,
        fsdp_transformer_layer_cls_to_wrap = None,
        accelerator_config = None,
        deepspeed = None,
        label_smoothing_factor = 0.0,
        optim = 'adamw_8bit',
        optim_args = None,
        adafactor = False,
        group_by_length = False,
        length_column_name = 'length',
        report_to = None,
        ddp_find_unused_parameters = None,
        ddp_bucket_cap_mb = None,
        ddp_broadcast_buffers = None,
        dataloader_pin_memory = True,
        dataloader_persistent_workers = False,
        skip_memory_metrics = True,
        use_legacy_prediction_loop = False,
        push_to_hub = False,
        resume_from_checkpoint = None,
        hub_model_id = None,
        hub_strategy = 'every_save',
        hub_token = None,
        hub_private_repo = None,
        hub_always_push = False,
        gradient_checkpointing = False,
        gradient_checkpointing_kwargs = None,
        include_inputs_for_metrics = False,
        eval_do_concat_batches = True,
        fp16_backend = 'auto',
        evaluation_strategy = None,
        push_to_hub_model_id = None,
        push_to_hub_organization = None,
        push_to_hub_token = None,
        mp_parameters = '',
        auto_find_batch_size = False,
        full_determinism = False,
        torchdynamo = None,
        ray_scope = 'last',
        ddp_timeout = 1800,
        torch_compile = False,
        torch_compile_backend = None,
        torch_compile_mode = None,
        dispatch_batches = None,
        split_batches = None,
        include_tokens_per_second = False,
        include_num_input_tokens_seen = False,
        neftune_noise_alpha = None,
        optim_target_modules = None,
        batch_eval_metrics = False,
        eval_on_start = False,
        use_liger_kernel = False,
        eval_use_gather_object = False,
        average_tokens_across_devices = False,
        max_length = 1024,
        max_prompt_length = 512,
        max_completion_length = None,
        beta = 0.1,
        label_smoothing = 0.0,
        loss_type = 'sigmoid',
        disable_dropout = True,
        cpo_alpha = 1.0,
        simpo_gamma = 0.5,
        label_pad_token_id = -100,
        padding_value = None,
        truncation_mode = 'keep_end',
        generate_during_eval = False,
        is_encoder_decoder = None,
        model_init_kwargs = None,
        dataset_num_proc = None,
        vllm_sampling_params = None,
        unsloth_num_chunks = -1,
        **kwargs,
    ):
        if learning_rate < 1e-7: raise FloatingPointError(f'Unsloth: Your learning rate of `{learning_rate}` is too small and less than 1e-7! Consider increasing it, otherwise gradient updates will be close to 0!')
        if learning_rate > 1: raise OverflowError(f'Unsloth: Your learning rate of `{learning_rate}` is way too larger > 1! Consider decreasing it to 1e-1, otherwise gradient updates will explode!')
        if output_dir is None and save_strategy == 'steps' and save_steps == 500:
            output_dir = 'unsloth_training_checkpoints'
            save_strategy = 'no'
        if dataset_num_proc is None:
            from multiprocessing import cpu_count
            dataset_num_proc = cpu_count()
        
        super().__init__(
            output_dir = output_dir,
            overwrite_output_dir = overwrite_output_dir,
            do_train = do_train,
            do_eval = do_eval,
            do_predict = do_predict,
            eval_strategy = eval_strategy,
            prediction_loss_only = prediction_loss_only,
            per_device_train_batch_size = per_device_train_batch_size,
            per_device_eval_batch_size = per_device_eval_batch_size,
            per_gpu_train_batch_size = per_gpu_train_batch_size,
            per_gpu_eval_batch_size = per_gpu_eval_batch_size,
            gradient_accumulation_steps = gradient_accumulation_steps,
            eval_accumulation_steps = eval_accumulation_steps,
            eval_delay = eval_delay,
            torch_empty_cache_steps = torch_empty_cache_steps,
            learning_rate = learning_rate,
            weight_decay = weight_decay,
            adam_beta1 = adam_beta1,
            adam_beta2 = adam_beta2,
            adam_epsilon = adam_epsilon,
            max_grad_norm = max_grad_norm,
            num_train_epochs = num_train_epochs,
            max_steps = max_steps,
            lr_scheduler_type = lr_scheduler_type,
            warmup_ratio = warmup_ratio,
            warmup_steps = warmup_steps,
            log_level = log_level,
            log_level_replica = log_level_replica,
            log_on_each_node = log_on_each_node,
            logging_dir = logging_dir,
            logging_strategy = logging_strategy,
            logging_first_step = logging_first_step,
            logging_steps = logging_steps,
            logging_nan_inf_filter = logging_nan_inf_filter,
            save_strategy = save_strategy,
            save_steps = save_steps,
            save_total_limit = save_total_limit,
            save_safetensors = save_safetensors,
            save_on_each_node = save_on_each_node,
            save_only_model = save_only_model,
            restore_callback_states_from_checkpoint = restore_callback_states_from_checkpoint,
            no_cuda = no_cuda,
            use_cpu = use_cpu,
            use_mps_device = use_mps_device,
            seed = seed,
            data_seed = data_seed,
            jit_mode_eval = jit_mode_eval,
            use_ipex = use_ipex,
            bf16 = bf16,
            fp16 = fp16,
            fp16_opt_level = fp16_opt_level,
            half_precision_backend = half_precision_backend,
            bf16_full_eval = bf16_full_eval,
            fp16_full_eval = fp16_full_eval,
            tf32 = tf32,
            local_rank = local_rank,
            ddp_backend = ddp_backend,
            tpu_num_cores = tpu_num_cores,
            tpu_metrics_debug = tpu_metrics_debug,
            debug = debug,
            dataloader_drop_last = dataloader_drop_last,
            eval_steps = eval_steps,
            dataloader_num_workers = dataloader_num_workers,
            dataloader_prefetch_factor = dataloader_prefetch_factor,
            past_index = past_index,
            run_name = run_name,
            disable_tqdm = disable_tqdm,
            remove_unused_columns = remove_unused_columns,
            label_names = label_names,
            load_best_model_at_end = load_best_model_at_end,
            metric_for_best_model = metric_for_best_model,
            greater_is_better = greater_is_better,
            ignore_data_skip = ignore_data_skip,
            fsdp = fsdp,
            fsdp_min_num_params = fsdp_min_num_params,
            fsdp_config = fsdp_config,
            fsdp_transformer_layer_cls_to_wrap = fsdp_transformer_layer_cls_to_wrap,
            accelerator_config = accelerator_config,
            deepspeed = deepspeed,
            label_smoothing_factor = label_smoothing_factor,
            optim = optim,
            optim_args = optim_args,
            adafactor = adafactor,
            group_by_length = group_by_length,
            length_column_name = length_column_name,
            report_to = report_to,
            ddp_find_unused_parameters = ddp_find_unused_parameters,
            ddp_bucket_cap_mb = ddp_bucket_cap_mb,
            ddp_broadcast_buffers = ddp_broadcast_buffers,
            dataloader_pin_memory = dataloader_pin_memory,
            dataloader_persistent_workers = dataloader_persistent_workers,
            skip_memory_metrics = skip_memory_metrics,
            use_legacy_prediction_loop = use_legacy_prediction_loop,
            push_to_hub = push_to_hub,
            resume_from_checkpoint = resume_from_checkpoint,
            hub_model_id = hub_model_id,
            hub_strategy = hub_strategy,
            hub_token = hub_token,
            hub_private_repo = hub_private_repo,
            hub_always_push = hub_always_push,
            gradient_checkpointing = gradient_checkpointing,
            gradient_checkpointing_kwargs = gradient_checkpointing_kwargs,
            include_inputs_for_metrics = include_inputs_for_metrics,
            eval_do_concat_batches = eval_do_concat_batches,
            fp16_backend = fp16_backend,
            evaluation_strategy = evaluation_strategy,
            push_to_hub_model_id = push_to_hub_model_id,
            push_to_hub_organization = push_to_hub_organization,
            push_to_hub_token = push_to_hub_token,
            mp_parameters = mp_parameters,
            auto_find_batch_size = auto_find_batch_size,
            full_determinism = full_determinism,
            torchdynamo = torchdynamo,
            ray_scope = ray_scope,
            ddp_timeout = ddp_timeout,
            torch_compile = torch_compile,
            torch_compile_backend = torch_compile_backend,
            torch_compile_mode = torch_compile_mode,
            dispatch_batches = dispatch_batches,
            split_batches = split_batches,
            include_tokens_per_second = include_tokens_per_second,
            include_num_input_tokens_seen = include_num_input_tokens_seen,
            neftune_noise_alpha = neftune_noise_alpha,
            optim_target_modules = optim_target_modules,
            batch_eval_metrics = batch_eval_metrics,
            eval_on_start = eval_on_start,
            use_liger_kernel = use_liger_kernel,
            eval_use_gather_object = eval_use_gather_object,
            average_tokens_across_devices = average_tokens_across_devices,
            max_length = max_length,
            max_prompt_length = max_prompt_length,
            max_completion_length = max_completion_length,
            beta = beta,
            label_smoothing = label_smoothing,
            loss_type = loss_type,
            disable_dropout = disable_dropout,
            cpo_alpha = cpo_alpha,
            simpo_gamma = simpo_gamma,
            label_pad_token_id = label_pad_token_id,
            padding_value = padding_value,
            truncation_mode = truncation_mode,
            generate_during_eval = generate_during_eval,
            is_encoder_decoder = is_encoder_decoder,
            model_init_kwargs = model_init_kwargs,
            dataset_num_proc = dataset_num_proc,**kwargs)
        self.vllm_sampling_params = vllm_sampling_params
        self.unsloth_num_chunks = unsloth_num_chunks
pass

class _UnslothCPOTrainer(Trainer):
    r""""""

    _tag_names = ["trl", "cpo"]

    def __init__(
        self,
        model: Optional[Union[PreTrainedModel, nn.Module, str]] = None,
        args: Optional[CPOConfig] = None,
        data_collator: Optional[DataCollator] = None,
        train_dataset: Optional[Dataset] = None,
        eval_dataset: Optional[Union[Dataset, dict[str, Dataset]]] = None,
        processing_class: Optional[
            Union[PreTrainedTokenizerBase, BaseImageProcessor, FeatureExtractionMixin, ProcessorMixin]
        ] = None,
        model_init: Optional[Callable[[], PreTrainedModel]] = None,
        callbacks: Optional[list[TrainerCallback]] = None,
        optimizers: tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None),
        preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None,
        peft_config: Optional[dict] = None,
        compute_metrics: Optional[Callable[[EvalLoopOutput], dict]] = None,
    ):
        if args.model_init_kwargs is None:
            model_init_kwargs = {}
        elif not isinstance(model, str):
            raise ValueError("You passed model_kwargs to the CPOTrainer. But your model is already instantiated.")
        else:
            model_init_kwargs = args.model_init_kwargs
            torch_dtype = model_init_kwargs.get("torch_dtype")
            if torch_dtype is not None:
                # Convert to `torch.dtype` if an str is passed
                if isinstance(torch_dtype, str) and torch_dtype != "auto":
                    torch_dtype = getattr(torch, torch_dtype)
                if torch_dtype != "auto" and not isinstance(torch_dtype, torch.dtype):
                    raise ValueError(
                        f"Invalid `torch_dtype` passed to the CPOConfig. Expected a string with either `torch.dtype` or 'auto', but got {torch_dtype}."
                    )
                model_init_kwargs["torch_dtype"] = torch_dtype

        if isinstance(model, str):
            model = AutoModelForCausalLM.from_pretrained(model, **model_init_kwargs)

        # Initialize this variable to False. This helps tracking the case when `peft_module_casting_to_bf16`
        # has been called in order to properly call autocast if needed.
        self._peft_has_been_casted_to_bf16 = False

        if not is_peft_available() and peft_config is not None:
            raise ValueError(
                "PEFT is not installed and you passed a `peft_config` in the trainer's kwargs, please install it to use the PEFT models"
            )
        elif is_peft_available() and peft_config is not None:
            # if model is a peft model and we have a peft_config, we merge and unload it first
            if isinstance(model, PeftModel):
                model = model.merge_and_unload()

            if getattr(model, "is_loaded_in_8bit", False) or getattr(model, "is_loaded_in_4bit", False):
                _support_gc_kwargs = hasattr(
                    args, "gradient_checkpointing_kwargs"
                ) and "gradient_checkpointing_kwargs" in list(
                    inspect.signature(prepare_model_for_kbit_training).parameters
                )

                prepare_model_kwargs = {"use_gradient_checkpointing": args.gradient_checkpointing}

                if _support_gc_kwargs:
                    prepare_model_kwargs["gradient_checkpointing_kwargs"] = args.gradient_checkpointing_kwargs

                model = prepare_model_for_kbit_training(model, **prepare_model_kwargs)
            elif getattr(args, "gradient_checkpointing", False):
                # For backward compatibility with older versions of transformers
                if hasattr(model, "enable_input_require_grads"):
                    model.enable_input_require_grads()
                else:

                    def make_inputs_require_grad(module, input, output):
                        output.requires_grad_(True)

                    model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)

            # get peft model with the given config
            model = model
            if args.bf16 and getattr(model, "is_loaded_in_4bit", False):
                peft_module_casting_to_bf16(model)
                # If args.bf16 we need to explicitly call `generate` with torch amp autocast context manager
                self._peft_has_been_casted_to_bf16 = True

        # For models that use gradient_checkpointing, we need to attach a hook that enables input
        # to explicitly have `requires_grad=True`, otherwise training will either silently
        # fail or completely fail.
        elif getattr(args, "gradient_checkpointing", False):
            # For backward compatibility with older versions of transformers
            if hasattr(model, "enable_input_require_grads"):
                model.enable_input_require_grads()
            else:

                def make_inputs_require_grad(module, input, output):
                    output.requires_grad_(True)

                model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)

        if args.generate_during_eval and not (is_wandb_available() or is_comet_available()):
            raise ValueError(
                "`generate_during_eval=True` requires Weights and Biases or Comet to be installed."
                " Please install `wandb` or `comet-ml` to resolve."
            )

        if model is not None:
            self.is_encoder_decoder = model.config.is_encoder_decoder
        elif args.is_encoder_decoder is None:
            raise ValueError("When no model is provided, you need to pass the parameter is_encoder_decoder.")
        else:
            self.is_encoder_decoder = args.is_encoder_decoder

        if self.is_encoder_decoder:
            self.decoder_start_token_id = model.config.decoder_start_token_id
            self.pad_token_id = model.config.pad_token_id

        if processing_class is None:
            raise ValueError("processing_class must be specified to tokenize a CPO dataset.")
        if args.max_length is None:
            warnings.warn(
                "`max_length` is not set in the CPOConfig's init"
                " it will default to `512` by default, but you should do it yourself in the future.",
                UserWarning,
            )
            max_length = 512
        else:
            max_length = args.max_length
        if args.max_prompt_length is None:
            warnings.warn(
                "`max_prompt_length` is not set in the CPOConfig's init"
                " it will default to `128` by default, but you should do it yourself in the future.",
                UserWarning,
            )
            max_prompt_length = 128
        else:
            max_prompt_length = args.max_prompt_length

        if args.max_completion_length is None and self.is_encoder_decoder:
            warnings.warn(
                "When using an encoder decoder architecture, you should set `max_completion_length` in the CPOConfig's init"
                " it will default to `128` by default, but you should do it yourself in the future.",
                UserWarning,
            )
            max_completion_length = 128
        else:
            max_completion_length = args.max_completion_length

        if data_collator is None:
            data_collator = DPODataCollatorWithPadding(
                pad_token_id=processing_class.pad_token_id,
                label_pad_token_id=args.label_pad_token_id,
                is_encoder_decoder=self.is_encoder_decoder,
            )

            if args.remove_unused_columns:
                args.remove_unused_columns = False
                # warn users
                warnings.warn(
                    "When using DPODataCollatorWithPadding, you should set `remove_unused_columns=False` in your TrainingArguments"
                    " we have set it for you, but you should do it yourself in the future.",
                    UserWarning,
                )

            self.use_dpo_data_collator = True
        else:
            self.use_dpo_data_collator = False

        # Disable dropout in the model
        if args.disable_dropout:
            disable_dropout_in_model(model)

        self.max_length = max_length
        self.generate_during_eval = args.generate_during_eval
        self.label_pad_token_id = args.label_pad_token_id
        self.padding_value = args.padding_value if args.padding_value is not None else processing_class.pad_token_id
        self.max_prompt_length = max_prompt_length
        self.truncation_mode = args.truncation_mode
        self.max_completion_length = max_completion_length
        self.processing_class = processing_class

        if args.loss_type in ["hinge", "ipo"] and args.label_smoothing > 0:
            warnings.warn(
                f"You are using the {args.loss_type} loss type that does not support label smoothing. The "
                "`label_smoothing` parameter will be ignored. Set `label_smoothing` to `0.0` to remove this warning.",
                UserWarning,
            )
        if args.loss_type == "kto_pair":
            raise ValueError("Support for kto_pair has been removed in CPOTrainer. Please use KTOTrainer.")

        self.beta = args.beta
        self.label_smoothing = args.label_smoothing
        self.loss_type = args.loss_type
        self.cpo_alpha = args.cpo_alpha
        self.aux_loss_enabled = getattr(model.config, "output_router_logits", False)
        self.aux_loss_coef = getattr(model.config, "router_aux_loss_coef", 0.0)
        if self.aux_loss_enabled and self.aux_loss_coef == 0.0:
            warnings.warn(
                "You set `output_router_logits` to `True` in the model config, but `router_aux_loss_coef` is set to "
                "`0.0`, meaning the auxiliary loss will not be used. Either set `router_aux_loss_coef` to a value "
                "greater than `0.0`, or set `output_router_logits` to `False` if you don't want to use the auxiliary "
                "loss.",
                UserWarning,
            )

        if args.loss_type == "simpo":
            self.simpo_gamma = args.simpo_gamma

        self._stored_metrics = defaultdict(lambda: defaultdict(list))

        # The trainer estimates the number of FLOPs (floating-point operations) using the number of elements in the
        # input tensor associated with the key "input_ids". However, in CPO, the sampled data does not include the
        # "input_ids" key. Instead, the available keys are "prompt_input_ids", "chosen_input_ids", and
        # "rejected_input_ids". As a result, the trainer issues the warning: "Could not estimate the number of tokens
        # of the input, floating-point operations will not be computed." To suppress this warning, we set the
        # "estimate_tokens" key in the model's "warnings_issued" dictionary to True. This acts as a flag to indicate
        # that the warning has already been issued.
        model.warnings_issued["estimate_tokens"] = True

        # Compute that only on the main process for faster data processing.
        # see: https://github.com/huggingface/trl/pull/1255
        with PartialState().local_main_process_first():
            # Extract the prompt if needed, and apply the chat template if needed
            train_dataset = train_dataset.map(maybe_extract_prompt, num_proc=args.dataset_num_proc)
            train_dataset = train_dataset.map(
                maybe_apply_chat_template, fn_kwargs={"tokenizer": processing_class}, num_proc=args.dataset_num_proc
            )
            if eval_dataset is not None:
                eval_dataset = eval_dataset.map(maybe_extract_prompt, num_proc=args.dataset_num_proc)
                eval_dataset = eval_dataset.map(
                    maybe_apply_chat_template,
                    fn_kwargs={"tokenizer": processing_class},
                    num_proc=args.dataset_num_proc,
                )

            # tokenize the dataset
            train_dataset = train_dataset.map(self.tokenize_row, num_proc=args.dataset_num_proc)
            if eval_dataset is not None:
                eval_dataset = eval_dataset.map(self.tokenize_row, num_proc=args.dataset_num_proc)

        super().__init__(
            model=model,
            args=args,
            data_collator=data_collator,
            train_dataset=train_dataset,
            eval_dataset=eval_dataset,
            processing_class=processing_class,
            model_init=model_init,
            compute_metrics=compute_metrics,
            callbacks=callbacks,
            optimizers=optimizers,
            preprocess_logits_for_metrics=preprocess_logits_for_metrics,
        )

        # Gradient accumulation requires scaled loss. Normally, loss scaling in the parent class depends on whether the
        # model accepts loss-related kwargs. Since we compute our own loss, this check is irrelevant. We set
        # self.model_accepts_loss_kwargs to False to enable scaling.
        self.model_accepts_loss_kwargs = False

        # Add tags for models that have been loaded with the correct transformers version
        if hasattr(self.model, "add_model_tags"):
            self.model.add_model_tags(self._tag_names)

        if not hasattr(self, "accelerator"):
            raise AttributeError(
                "Your `Trainer` does not have an `accelerator` object. Consider upgrading `transformers`."
            )

    def build_tokenized_answer(self, prompt, answer):
        """
        Llama tokenizer does satisfy `enc(a + b) = enc(a) + enc(b)`.
        It does ensure `enc(a + b) = enc(a) + enc(a + b)[len(enc(a)):]`.
        Reference:
            https://github.com/EleutherAI/lm-evaluation-harness/pull/531#issuecomment-1595586257
        """

        full_tokenized = self.processing_class(prompt + answer, add_special_tokens=False)
        prompt_input_ids = self.processing_class(prompt, add_special_tokens=False)["input_ids"]

        answer_input_ids = full_tokenized["input_ids"][len(prompt_input_ids) :]
        answer_attention_mask = full_tokenized["attention_mask"][len(prompt_input_ids) :]

        # Concat tokens to form `enc(a) + enc(a + b)[len(enc(a)):]`
        full_concat_input_ids = np.concatenate([prompt_input_ids, answer_input_ids])

        # Prepare input tokens for token by token comparison
        full_input_ids = np.array(full_tokenized["input_ids"])

        if len(full_input_ids) != len(full_concat_input_ids):
            raise ValueError("Prompt input ids and answer input ids should have the same length.")

        # On some tokenizers, like Llama-2 tokenizer, there are occasions where tokens
        # can be merged together when tokenizing prompt+answer. This could result
        # on the last token from the prompt being different when tokenized on its own
        # vs when done as prompt+answer.
        response_token_ids_start_idx = len(prompt_input_ids)

        # If tokenized prompt is different than both prompt+answer, then it means the
        # last token has changed due to merging.
        if prompt_input_ids != full_tokenized["input_ids"][:response_token_ids_start_idx]:
            response_token_ids_start_idx -= 1

        prompt_input_ids = full_tokenized["input_ids"][:response_token_ids_start_idx]
        prompt_attention_mask = full_tokenized["attention_mask"][:response_token_ids_start_idx]

        if len(prompt_input_ids) != len(prompt_attention_mask):
            raise ValueError("Prompt input ids and attention mask should have the same length.")

        answer_input_ids = full_tokenized["input_ids"][response_token_ids_start_idx:]
        answer_attention_mask = full_tokenized["attention_mask"][response_token_ids_start_idx:]

        return dict(
            prompt_input_ids=prompt_input_ids,
            prompt_attention_mask=prompt_attention_mask,
            input_ids=answer_input_ids,
            attention_mask=answer_attention_mask,
        )

    def tokenize_row(self, feature, model: Optional[Union[PreTrainedModel, nn.Module]] = None) -> dict:
        """Tokenize a single row from a CPO specific dataset.

        At this stage, we don't convert to PyTorch tensors yet; we just handle the truncation
        in case the prompt + chosen or prompt + rejected responses is/are too long. First
        we truncate the prompt; if we're still too long, we truncate the chosen/rejected.

        We also create the labels for the chosen/rejected responses, which are of length equal to
        the sum of the length of the prompt and the chosen/rejected response, with
        label_pad_token_id  for the prompt tokens.
        """
        batch = {}
        prompt = feature["prompt"]
        chosen = feature["chosen"]
        rejected = feature["rejected"]

        if not self.is_encoder_decoder:
            # Check issues below for more details
            #  1. https://github.com/huggingface/trl/issues/907
            #  2. https://github.com/EleutherAI/lm-evaluation-harness/pull/531#issuecomment-1595586257
            #  3. https://github.com/LianjiaTech/BELLE/issues/337

            if not isinstance(prompt, str):
                raise ValueError(f"prompt should be an str but got {type(prompt)}")
            prompt_tokens = self.processing_class(prompt, add_special_tokens=False)
            prompt_tokens = {f"prompt_{k}": v for k, v in prompt_tokens.items()}

            if not isinstance(chosen, str):
                raise ValueError(f"chosen should be an str but got {type(chosen)}")
            chosen_tokens = self.build_tokenized_answer(prompt, chosen)

            if not isinstance(rejected, str):
                raise ValueError(f"rejected should be an str but got {type(rejected)}")
            rejected_tokens = self.build_tokenized_answer(prompt, rejected)

            # Last prompt token might get merged by tokenizer and
            # it should not be included for generation if that happens
            prompt_len_input_ids = len(prompt_tokens["prompt_input_ids"])

            chosen_prompt_len_input_ids = len(chosen_tokens["prompt_input_ids"])
            rejected_prompt_len_input_ids = len(rejected_tokens["prompt_input_ids"])
            prompt_len_input_ids = min(chosen_prompt_len_input_ids, rejected_prompt_len_input_ids)

            for k, v in prompt_tokens.items():
                prompt_tokens[k] = v[:prompt_len_input_ids]

            # Make sure prompts only have one different token at most an
            # and length only differs by 1 at most
            num_diff_tokens = sum(
                [a != b for a, b in zip(chosen_tokens["prompt_input_ids"], rejected_tokens["prompt_input_ids"])]
            )
            num_diff_len = abs(chosen_prompt_len_input_ids - rejected_prompt_len_input_ids)
            if num_diff_tokens > 1 or num_diff_len > 1:
                raise ValueError(
                    "Chosen and rejected prompt_input_ids might only differ on the "
                    "last token due to tokenizer merge ops."
                )

            # add BOS token to head of prompt. Avoid adding if it's already there
            prompt_tokens, chosen_tokens, rejected_tokens = add_bos_token_if_needed(
                self.processing_class.bos_token_id,
                prompt_len_input_ids,
                prompt_tokens,
                chosen_prompt_len_input_ids,
                chosen_tokens,
                rejected_prompt_len_input_ids,
                rejected_tokens,
            )

            # add EOS token to end of answer. Avoid adding if it's already there
            chosen_tokens, rejected_tokens = add_eos_token_if_needed(
                self.processing_class.eos_token_id, chosen_tokens, rejected_tokens
            )

            longer_response_length = max(len(chosen_tokens["input_ids"]), len(rejected_tokens["input_ids"]))

            # if combined sequence is too long, truncate the prompt
            for answer_tokens in [chosen_tokens, rejected_tokens, prompt_tokens]:
                if len(answer_tokens["prompt_input_ids"]) + longer_response_length > self.max_length:
                    if self.truncation_mode == "keep_start":
                        for k in ["prompt_input_ids", "prompt_attention_mask"]:
                            answer_tokens[k] = answer_tokens[k][: self.max_prompt_length]
                    elif self.truncation_mode == "keep_end":
                        for k in ["prompt_input_ids", "prompt_attention_mask"]:
                            answer_tokens[k] = answer_tokens[k][-self.max_prompt_length :]
                    else:
                        raise ValueError(f"Unknown truncation mode: {self.truncation_mode}")

            # if that's still too long, truncate the response
            for answer_tokens in [chosen_tokens, rejected_tokens]:
                if len(answer_tokens["prompt_input_ids"]) + longer_response_length > self.max_length:
                    for k in ["input_ids", "attention_mask"]:
                        answer_tokens[k] = answer_tokens[k][: self.max_length - self.max_prompt_length]

            # Create labels
            chosen_sequence_tokens = {
                k: chosen_tokens[f"prompt_{k}"] + chosen_tokens[k] for k in ["input_ids", "attention_mask"]
            }
            rejected_sequence_tokens = {
                k: rejected_tokens[f"prompt_{k}"] + rejected_tokens[k] for k in ["input_ids", "attention_mask"]
            }
            chosen_sequence_tokens["labels"] = chosen_sequence_tokens["input_ids"][:]
            chosen_sequence_tokens["labels"][: len(chosen_tokens["prompt_input_ids"])] = [
                self.label_pad_token_id
            ] * len(chosen_tokens["prompt_input_ids"])
            rejected_sequence_tokens["labels"] = rejected_sequence_tokens["input_ids"][:]
            rejected_sequence_tokens["labels"][: len(rejected_tokens["prompt_input_ids"])] = [
                self.label_pad_token_id
            ] * len(rejected_tokens["prompt_input_ids"])

            for k, toks in {
                "chosen_": chosen_sequence_tokens,
                "rejected_": rejected_sequence_tokens,
                "": prompt_tokens,
            }.items():
                for type_key, tokens in toks.items():
                    if type_key == "token_type_ids":
                        continue
                    batch[f"{k}{type_key}"] = tokens

        else:
            chosen_tokens = self.processing_class(
                chosen, truncation=True, max_length=self.max_completion_length, add_special_tokens=True
            )
            rejected_tokens = self.processing_class(
                rejected, truncation=True, max_length=self.max_completion_length, add_special_tokens=True
            )
            prompt_tokens = self.processing_class(
                prompt, truncation=True, max_length=self.max_prompt_length, add_special_tokens=True
            )

            batch["chosen_labels"] = chosen_tokens["input_ids"]
            batch["rejected_labels"] = rejected_tokens["input_ids"]
            batch["prompt_input_ids"] = prompt_tokens["input_ids"]
            batch["prompt_attention_mask"] = prompt_tokens["attention_mask"]

            if model is not None and hasattr(model, "prepare_decoder_input_ids_from_labels"):
                batch["rejected_decoder_input_ids"] = model.prepare_decoder_input_ids_from_labels(
                    labels=torch.tensor(batch["rejected_labels"])
                )
                batch["chosen_decoder_input_ids"] = model.prepare_decoder_input_ids_from_labels(
                    labels=torch.tensor(batch["chosen_labels"])
                )

        return batch

    @staticmethod
    def concatenated_inputs(
        batch: dict[str, Union[list, torch.LongTensor]],
        is_encoder_decoder: bool = False,
        label_pad_token_id: int = -100,
        padding_value: int = 0,
        device: Optional[torch.device] = None,
    ) -> dict[str, torch.LongTensor]:
        """Concatenate the chosen and rejected inputs into a single tensor.

        Args:
            batch: A batch of data. Must contain the keys 'chosen_input_ids' and 'rejected_input_ids', which are tensors of shape (batch_size, sequence_length).
            is_encoder_decoder: Whether the model is an encoder-decoder model.
            label_pad_token_id: The label pad token id.
            padding_value: The padding value to use for the concatenated inputs_ids.
            device: The device for the concatenated inputs.

        Returns:
            A dictionary containing the concatenated inputs under the key 'concatenated_input_ids'.
        """
        concatenated_batch = {}

        if is_encoder_decoder:
            max_length = max(batch["chosen_labels"].shape[1], batch["rejected_labels"].shape[1])
        else:
            max_length = max(batch["chosen_input_ids"].shape[1], batch["rejected_input_ids"].shape[1])

        for k in batch:
            if k.startswith("chosen") and isinstance(batch[k], torch.Tensor):
                if "labels" in k or is_encoder_decoder:
                    pad_value = label_pad_token_id
                elif k.endswith("_input_ids"):
                    pad_value = padding_value
                elif k.endswith("_attention_mask"):
                    pad_value = 0
                concatenated_key = k.replace("chosen", "concatenated")
                concatenated_batch[concatenated_key] = pad_to_length(batch[k], max_length, pad_value=pad_value)
        for k in batch:
            if k.startswith("rejected") and isinstance(batch[k], torch.Tensor):
                if "labels" in k or is_encoder_decoder:
                    pad_value = label_pad_token_id
                elif k.endswith("_input_ids"):
                    pad_value = padding_value
                elif k.endswith("_attention_mask"):
                    pad_value = 0
                concatenated_key = k.replace("rejected", "concatenated")
                concatenated_batch[concatenated_key] = torch.cat(
                    (
                        concatenated_batch[concatenated_key],
                        pad_to_length(batch[k], max_length, pad_value=pad_value),
                    ),
                    dim=0,
                ).to(device=device)

        if is_encoder_decoder:
            concatenated_batch["concatenated_input_ids"] = batch["prompt_input_ids"].repeat(2, 1).to(device=device)
            concatenated_batch["concatenated_attention_mask"] = (
                batch["prompt_attention_mask"].repeat(2, 1).to(device=device)
            )

        return concatenated_batch

    def cpo_loss(
        self,
        policy_chosen_logps: torch.FloatTensor,
        policy_rejected_logps: torch.FloatTensor,
    ) -> tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]:
        """Compute the CPO loss for a batch of policy and reference model log probabilities.

        Args:
            policy_chosen_logps: Log probabilities of the policy model for the chosen responses. Shape: (batch_size,)
            policy_rejected_logps: Log probabilities of the policy model for the rejected responses. Shape: (batch_size,)

        Returns:
            A tuple of three tensors: (losses, chosen_rewards, rejected_rewards).
            The losses tensor contains the CPO loss for each example in the batch.
            The chosen_rewards and rejected_rewards tensors contain the rewards for the chosen and rejected responses, respectively.
        """
        logits = (policy_chosen_logps - policy_rejected_logps).to(self.accelerator.device)

        # The beta is a temperature parameter for the CPO loss, typically something in the range of 0.1 to 0.5.
        # We ignore the reference model as beta -> 0. The label_smoothing parameter encodes our uncertainty about the labels and
        # calculates a conservative CPO loss.

        if self.loss_type == "simpo":
            gamma_logratios = self.simpo_gamma / self.beta
            logits = logits - gamma_logratios
            # This reduces to Equation 3 from the CPO paper when label_smoothing -> 0.
            losses = (
                -F.logsigmoid(self.beta * logits) * (1 - self.label_smoothing)
                - F.logsigmoid(-self.beta * logits) * self.label_smoothing
            )
        elif self.loss_type == "sigmoid":
            # This reduces to Equation 3 from the CPO paper when label_smoothing -> 0.
            losses = (
                -F.logsigmoid(self.beta * logits) * (1 - self.label_smoothing)
                - F.logsigmoid(-self.beta * logits) * self.label_smoothing
            )
        elif self.loss_type == "hinge":
            losses = torch.relu(1 - self.beta * logits)
        elif self.loss_type == "ipo":
            # eqn (17) of the paper where beta is the regularization parameter for the IPO loss, denoted by tau in the paper.
            losses = (logits - 1 / (2 * self.beta)) ** 2
        else:
            raise ValueError(
                f"Unknown loss type: {self.loss_type}. Should be one of ['sigmoid', 'hinge', 'ipo', 'simpo']"
            )

        chosen_rewards = self.beta * (policy_chosen_logps.to(self.accelerator.device)).detach()
        rejected_rewards = self.beta * (policy_rejected_logps.to(self.accelerator.device)).detach()

        return losses, chosen_rewards, rejected_rewards

    @staticmethod
    def get_batch_logps(
        logits: torch.FloatTensor,
        labels: torch.LongTensor,
        average_log_prob: bool = False,
        label_pad_token_id: int = -100,
        is_encoder_decoder: bool = False,
    ) -> torch.FloatTensor:
        """Compute the log probabilities of the given labels under the given logits.

        Args:
            logits: Logits of the model (unnormalized). Shape: (batch_size, sequence_length, vocab_size)
            labels: Labels for which to compute the log probabilities. Label tokens with a value of label_pad_token_id are ignored. Shape: (batch_size, sequence_length)
            average_log_prob: If True, return the average log probability per (non-masked) token. Otherwise, return the sum of the log probabilities of the (non-masked) tokens.
            label_pad_token_id: The label pad token id.
            is_encoder_decoder: Whether the model is an encoder-decoder model.

        Returns:
            A tensor of shape (batch_size,) containing the average/sum log probabilities of the given labels under the given logits.
        """
        if logits.shape[:-1] != labels.shape:
            raise ValueError("Logits (batch and sequence length dim) and labels must have the same shape.")

        if not is_encoder_decoder:
            labels = labels[:, 1:].clone()
            logits = logits[:, :-1, :]
        loss_mask = labels != label_pad_token_id

        # dummy token; we'll ignore the losses on these tokens later
        labels[labels == label_pad_token_id] = 0

        per_token_logps = selective_log_softmax(logits, labels)

        if average_log_prob:
            return (per_token_logps * loss_mask).sum(-1) / loss_mask.sum(-1)
        else:
            return (per_token_logps * loss_mask).sum(-1)

    def concatenated_forward(
        self, model: nn.Module, batch: dict[str, Union[list, torch.LongTensor]]
    ) -> tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]:
        """Run the given model on the given batch of inputs, concatenating the chosen and rejected inputs together.

        We do this to avoid doing two forward passes, because it's faster for FSDP.
        """
        concatenated_batch = self.concatenated_inputs(
            batch,
            is_encoder_decoder=self.is_encoder_decoder,
            label_pad_token_id=self.label_pad_token_id,
            padding_value=self.padding_value,
            device=self.accelerator.device,
        )
        len_chosen = batch["chosen_labels"].shape[0]

        model_kwargs = (
            {
                "decoder_input_ids": self._shift_right(concatenated_batch["concatenated_labels"]),
            }
            if self.is_encoder_decoder
            else {}
        )

        if self.aux_loss_enabled:
            model_kwargs["output_router_logits"] = True

        outputs = model(
            concatenated_batch["concatenated_input_ids"],
            attention_mask=concatenated_batch["concatenated_attention_mask"],
            use_cache=False,
            **model_kwargs,
        )
        all_logits = outputs.logits

        def cross_entropy_loss(logits, labels):
            if not self.is_encoder_decoder:
                # Shift so that tokens < n predict n
                logits = logits[..., :-1, :].contiguous()
                labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = nn.CrossEntropyLoss()
            logits = logits.view(-1, logits.shape[-1])
            labels = labels.view(-1)
            # Enable model parallelism
            labels = labels.to(logits.device)
            loss = loss_fct(logits, labels)
            return loss

        labels = concatenated_batch["concatenated_labels"].clone()

        if self.cpo_alpha == 0:
            nll_loss = torch.tensor(0.0).to(self.accelerator.device)
        else:
            nll_loss = cross_entropy_loss(all_logits[:len_chosen], labels[:len_chosen])

        all_logps = self.get_batch_logps(
            all_logits,
            concatenated_batch["concatenated_labels"],
            average_log_prob=self.loss_type in ["ipo", "simpo"],
            is_encoder_decoder=self.is_encoder_decoder,
            label_pad_token_id=self.label_pad_token_id,
        )

        chosen_logps = all_logps[:len_chosen]
        rejected_logps = all_logps[len_chosen:]

        chosen_logits = all_logits[:len_chosen]
        rejected_logits = all_logits[len_chosen:]

        if self.aux_loss_enabled:
            return (chosen_logps, rejected_logps, chosen_logits, rejected_logits, nll_loss, outputs.aux_loss)

        return (chosen_logps, rejected_logps, chosen_logits, rejected_logits, nll_loss)

    def get_batch_loss_metrics(
        self,
        model,
        batch: dict[str, Union[list, torch.LongTensor]],
        train_eval: Literal["train", "eval"] = "train",
    ):
        """Compute the CPO loss and other metrics for the given batch of inputs for train or test."""
        metrics = {}

        forward_output = self.concatenated_forward(model, batch)
        (
            policy_chosen_logps,
            policy_rejected_logps,
            policy_chosen_logits,
            policy_rejected_logits,
            policy_nll_loss,
        ) = forward_output[:5]
        if self.aux_loss_enabled:
            aux_loss = forward_output[5]

        losses, chosen_rewards, rejected_rewards = self.cpo_loss(
            policy_chosen_logps,
            policy_rejected_logps,
        )

        loss = losses.mean() + self.cpo_alpha * policy_nll_loss
        reward_accuracies = (chosen_rewards > rejected_rewards).float()

        prefix = "eval_" if train_eval == "eval" else ""
        metrics[f"{prefix}rewards/chosen"] = self.accelerator.gather_for_metrics(chosen_rewards).mean().item()
        metrics[f"{prefix}rewards/rejected"] = self.accelerator.gather_for_metrics(rejected_rewards).mean().item()
        metrics[f"{prefix}rewards/accuracies"] = self.accelerator.gather_for_metrics(reward_accuracies).mean().item()
        metrics[f"{prefix}rewards/margins"] = (
            self.accelerator.gather_for_metrics(chosen_rewards - rejected_rewards).mean().item()
        )
        metrics[f"{prefix}logps/rejected"] = (
            self.accelerator.gather_for_metrics(policy_rejected_logps).detach().mean().item()
        )
        metrics[f"{prefix}logps/chosen"] = (
            self.accelerator.gather_for_metrics(policy_chosen_logps).detach().mean().item()
        )
        metrics[f"{prefix}logits/rejected"] = (
            self.accelerator.gather_for_metrics(policy_rejected_logits).detach().mean().item()
        )
        metrics[f"{prefix}logits/chosen"] = (
            self.accelerator.gather_for_metrics(policy_chosen_logits).detach().mean().item()
        )
        metrics[f"{prefix}nll_loss"] = self.accelerator.gather_for_metrics(policy_nll_loss).detach().mean().item()

        if self.aux_loss_enabled:
            loss += self.aux_loss_coef * aux_loss

        return loss, metrics

    def compute_loss(
        self,
        model: Union[PreTrainedModel, nn.Module],
        inputs: dict[str, Union[torch.Tensor, Any]],
        return_outputs=False,
        num_items_in_batch=None,
    ) -> Union[torch.Tensor, tuple[torch.Tensor, dict[str, torch.Tensor]]]:
        compute_loss_context_manager = amp.autocast("cuda") if self._peft_has_been_casted_to_bf16 else nullcontext()

        with compute_loss_context_manager:
            loss, metrics = self.get_batch_loss_metrics(model, inputs, train_eval="train")

        # force log the metrics
        self.store_metrics(metrics, train_eval="train")

        if return_outputs:
            return (loss, metrics)
        return loss

    def generate_from_model(self, model, batch: dict[str, torch.LongTensor]) -> str:
        """Generate samples from the model and reference model for the given batch of inputs."""

        # If one uses `generate_during_eval` with peft + bf16, we need to explicitly call generate with
        # the torch cuda amp context manager as some hidden states are silently casted to full precision.
        generate_context_manager = amp.autocast("cuda") if self._peft_has_been_casted_to_bf16 else nullcontext()

        with generate_context_manager:
            policy_output = model.generate(
                input_ids=batch["prompt_input_ids"],
                attention_mask=batch["prompt_attention_mask"],
                max_length=self.max_length,
                do_sample=True,
                pad_token_id=self.processing_class.pad_token_id,
            )

        policy_output = pad_to_length(policy_output, self.max_length, self.processing_class.pad_token_id)
        policy_output_decoded = self.processing_class.batch_decode(policy_output, skip_special_tokens=True)

        return policy_output_decoded

    def prediction_step(
        self,
        model: Union[PreTrainedModel, nn.Module],
        inputs: dict[str, Union[torch.Tensor, Any]],
        prediction_loss_only: bool,
        ignore_keys: Optional[list[str]] = None,
    ):
        if ignore_keys is None:
            if hasattr(model, "config"):
                ignore_keys = getattr(model.config, "keys_to_ignore_at_inference", [])
            else:
                ignore_keys = []

        prediction_context_manager = amp.autocast("cuda") if self._peft_has_been_casted_to_bf16 else nullcontext()

        with torch.no_grad(), prediction_context_manager:
            loss, metrics = self.get_batch_loss_metrics(model, inputs, train_eval="eval")

        # force log the metrics
        self.store_metrics(metrics, train_eval="eval")

        if prediction_loss_only:
            return (loss.detach(), None, None)

        # logits for the chosen and rejected samples from model
        logits_dict = {
            "eval_logits/chosen": metrics["eval_logits/chosen"],
            "eval_logits/rejected": metrics["eval_logits/rejected"],
        }
        logits = tuple(v.unsqueeze(dim=0) for k, v in logits_dict.items() if k not in ignore_keys)
        logits = torch.stack(logits).mean(axis=1).to(self.accelerator.device)
        labels = torch.zeros(logits.shape[0], device=self.accelerator.device)

        return (loss.detach(), logits, labels)

    def store_metrics(self, metrics: dict[str, float], train_eval: Literal["train", "eval"] = "train") -> None:
        for key, value in metrics.items():
            self._stored_metrics[train_eval][key].append(value)

    def evaluation_loop(
        self,
        dataloader: DataLoader,
        description: str,
        prediction_loss_only: Optional[bool] = None,
        ignore_keys: Optional[list[str]] = None,
        metric_key_prefix: str = "eval",
    ) -> EvalLoopOutput:
        """
        Overriding built-in evaluation loop to store metrics for each batch.
        Prediction/evaluation loop, shared by `Trainer.evaluate()` and `Trainer.predict()`.

        Works both with or without labels.
        """

        # Sample and save to game log if requested (for one batch to save time)
        if self.generate_during_eval:
            # Generate random indices within the range of the total number of samples
            num_samples = len(dataloader.dataset)
            random_indices = random.sample(range(num_samples), k=self.args.eval_batch_size)

            # Use dataloader.dataset.select to get the random batch without iterating over the DataLoader
            random_batch_dataset = dataloader.dataset.select(random_indices)
            random_batch = self.data_collator(random_batch_dataset)
            random_batch = self._prepare_inputs(random_batch)

            policy_output_decoded = self.generate_from_model(self.model, random_batch)

            table = pd.DataFrame(
                columns=["Prompt", "Policy"],
                data=[
                    [prompt, pol[len(prompt) :]] for prompt, pol in zip(random_batch["prompt"], policy_output_decoded)
                ],
            )
            if "wandb" in self.args.report_to:
                wandb.log({"game_log": wandb.Table(data=table)})

            if "comet_ml" in self.args.report_to:
                log_table_to_comet_experiment(
                    name="game_log.csv",
                    table=table,
                )

        # Base evaluation
        initial_output = super().evaluation_loop(
            dataloader, description, prediction_loss_only, ignore_keys, metric_key_prefix
        )

        return initial_output

    def log(self, logs: dict[str, float], start_time: Optional[float] = None) -> None:
        """
        Log `logs` on the various objects watching training, including stored metrics.

        Args:
            logs (`dict[str, float]`):
                The values to log.
            start_time (`float` or `None`, *optional*, defaults to `None`):
                Start time of the training.
        """
        # logs either has 'loss' or 'eval_loss'
        train_eval = "train" if "loss" in logs else "eval"
        # Add averaged stored metrics to logs
        for key, metrics in self._stored_metrics[train_eval].items():
            logs[key] = torch.tensor(metrics).mean().item()
        del self._stored_metrics[train_eval]

        if version.parse(transformers.__version__) >= version.parse("4.47.0.dev0"):
            return super().log(logs, start_time)
        else:  # transformers<=4.46
            return super().log(logs)

    def _shift_right(self, input_ids):
        if self.decoder_start_token_id is None:
            raise ValueError(
                "model.config.decoder_start_token_id has to be defined. It is usually set to the pad_token_id."
            )

        # shift inputs to the right
        if is_torch_fx_proxy(input_ids):
            # Item assignment is not supported natively for proxies.
            shifted_input_ids = torch.full(input_ids.shape[:-1] + (1,), self.decoder_start_token_id)
            shifted_input_ids = torch.cat([shifted_input_ids, input_ids[..., :-1]], dim=-1)
        else:
            shifted_input_ids = input_ids.new_zeros(input_ids.shape)
            shifted_input_ids[..., 1:] = input_ids[..., :-1].clone()
            shifted_input_ids[..., 0] = self.decoder_start_token_id

        if self.pad_token_id is None:
            raise ValueError("model.config.pad_token_id has to be defined.")
        # replace possible -100 values in labels by `pad_token_id`
        shifted_input_ids.masked_fill_(shifted_input_ids == -100, self.pad_token_id)

        return shifted_input_ids

    def create_model_card(
        self,
        model_name: Optional[str] = None,
        dataset_name: Optional[str] = None,
        tags: Union[str, list[str], None] = None,
    ):
        """
        Creates a draft of a model card using the information available to the `Trainer`.

        Args:
            model_name (`str` or `None`, *optional*, defaults to `None`):
                Name of the model.
            dataset_name (`str` or `None`, *optional*, defaults to `None`):
                Name of the dataset used for training.
            tags (`str`, `list[str]` or `None`, *optional*, defaults to `None`):
                Tags to be associated with the model card.
        """
        if not self.is_world_process_zero():
            return

        if hasattr(self.model.config, "_name_or_path") and not os.path.isdir(self.model.config._name_or_path):
            base_model = self.model.config._name_or_path
        else:
            base_model = None

        tags = tags or []
        if isinstance(tags, str):
            tags = [tags]

        if hasattr(self.model.config, "unsloth_version"):
            tags.append("unsloth")

        citation = textwrap.dedent("""\
        @inproceedings{xu2024contrastive,
            title        = {{Contrastive Preference Optimization: Pushing the Boundaries of LLM Performance in Machine Translation}},
            author       = {Haoran Xu and Amr Sharaf and Yunmo Chen and Weiting Tan and Lingfeng Shen and Benjamin Van Durme and Kenton Murray and Young Jin Kim},
            year         = 2024,
            booktitle    = {Forty-first International Conference on Machine Learning, {ICML} 2024, Vienna, Austria, July 21-27, 2024},
            publisher    = {OpenReview.net},
            url          = {https://openreview.net/forum?id=51iwkioZpn}
        }""")

        model_card = generate_model_card(
            base_model=base_model,
            model_name=model_name,
            hub_model_id=self.hub_model_id,
            dataset_name=dataset_name,
            tags=tags,
            wandb_url=wandb.run.get_url() if is_wandb_available() and wandb.run is not None else None,
            comet_url=get_comet_experiment_url(),
            trainer_name="CPO",
            trainer_citation=citation,
            paper_title="Contrastive Preference Optimization: Pushing the Boundaries of LLM Performance in Machine Translation",
            paper_id="2401.08417",
        )
        model_card.save(os.path.join(self.args.output_dir, "README.md"))
class UnslothCPOTrainer(_UnslothCPOTrainer):
    """
    
    Initialize CPOTrainer.

    Args:
        model (`transformers.PreTrainedModel`):
            The model to train, preferably an `AutoModelForSequenceClassification`.
        args (`CPOConfig`):
            The CPO config arguments to use for training.
        data_collator (`transformers.DataCollator`):
            The data collator to use for training. If None is specified, the default data collator (`DPODataCollatorWithPadding`) will be used
            which will pad the sequences to the maximum length of the sequences in the batch, given a dataset of paired sequences.
        train_dataset (`datasets.Dataset`):
            The dataset to use for training.
        eval_dataset (`datasets.Dataset`):
            The dataset to use for evaluation.
        processing_class (`PreTrainedTokenizerBase` or `BaseImageProcessor` or `FeatureExtractionMixin` or `ProcessorMixin`, *optional*):
            Processing class used to process the data. If provided, will be used to automatically process the inputs
            for the model, and it will be saved along the model to make it easier to rerun an interrupted training or
            reuse the fine-tuned model.
        model_init (`Callable[[], transformers.PreTrainedModel]`):
            The model initializer to use for training. If None is specified, the default model initializer will be used.
        callbacks (`list[transformers.TrainerCallback]`):
            The callbacks to use for training.
        optimizers (`tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR]`):
            The optimizer and scheduler to use for training.
        preprocess_logits_for_metrics (`Callable[[torch.Tensor, torch.Tensor], torch.Tensor]`):
            The function to use to preprocess the logits before computing the metrics.
        peft_config (`dict`, defaults to `None`):
            The PEFT configuration to use for training. If you pass a PEFT configuration, the model will be wrapped in a PEFT model.
        compute_metrics (`Callable[[EvalPrediction], dict]`, *optional*):
            The function to use to compute the metrics. Must take a `EvalPrediction` and return
            a dictionary string to metric values.
    
    """
    def __init__(
        self,
        model = None,
        args = None,
        data_collator = None,
        train_dataset = None,
        eval_dataset = None,
        processing_class = None,
        model_init = None,
        callbacks = None,
        preprocess_logits_for_metrics = None,
        peft_config = None,
        compute_metrics = None,
        **kwargs
    ):
        if args is None: args = UnslothCPOConfig()
        use_bf16 = getattr(args, 'bf16', False)
        use_fp16 = getattr(args, 'fp16', False)
        force_float32 = False
        if os.environ.get('UNSLOTH_FORCE_FLOAT32', '0') == '1':
            print('Unsloth: Switching to float32 training since model cannot work with float16')
            force_float32 = True
        mixed_precision_dtype = os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32')
        dtype = getattr(model.config, 'torch_dtype', None)
        if dtype is None: dtype = model.get_input_embeddings().dtype
        from unsloth_zoo.utils import _get_dtype
        dtype = _get_dtype(dtype)
        float16 = dtype == torch.float16
        if not force_float32 and (float16 and use_bf16): raise TypeError('Unsloth: Model is in float16 precision but you want to use bfloat16 precision. Set fp16 to `True` and bf16 to `False`')
        if not force_float32 and (not float16 and use_fp16): raise TypeError('Unsloth: Model is in bfloat16 precision but you want to use float16 precision. Set fp16 to `False` and bf16 to `True`')
        if force_float32:
            args.fp16 = False
            args.bf16 = False
            os.environ['ACCELERATE_MIXED_PRECISION'] = 'no'
        elif (not use_bf16 and not use_fp16) and mixed_precision_dtype == 'float32':
            args.fp16 = float16
            args.bf16 = not float16
            os.environ['ACCELERATE_MIXED_PRECISION'] = 'fp16' if float16 else 'bf16'
        if getattr(args, 'eval_dataset', None) is not None and getattr(args, 'eval_strategy', 'no') == 'no':
            args.eval_strategy = 'steps'
            if getattr(args, 'eval_steps', None) is None: args.eval_steps = 0.1
        ga_steps = getattr(args, 'gradient_accumulation_steps', None)
        if ga_steps is not None and ga_steps > 1:
            from transformers import __version__ as transformers_version
            if Version(transformers_version) <= Version('4.45.2'):
                print('**** Unsloth: Please use our fixed gradient_accumulation_steps by updating transformers, TRL and Unsloth!\n'
                      '`pip install --upgrade --no-cache-dir --force-reinstall --no-deps unsloth transformers trl unsloth_zoo`')
        if getattr(args, 'eval_strategy', 'no') != 'no':
            eval_bsz = getattr(args, 'per_device_eval_batch_size', 8)
            if eval_bsz == 8 and args.per_device_train_batch_size < eval_bsz: args.per_device_eval_batch_size = args.per_device_train_batch_size
            if getattr(args, 'eval_accumulation_steps', None) is None and ga_steps is not None: args.eval_accumulation_steps = ga_steps
        fp16_full_eval = getattr(args, 'fp16_full_eval', False)
        bf16_full_eval = getattr(args, 'bf16_full_eval', False)
        if args.fp16 and bf16_full_eval: args.bf16_full_eval = False; args.fp16_full_eval = True
        if args.bf16 and fp16_full_eval: args.bf16_full_eval = True; args.fp16_full_eval = False
        if force_float32:
            args.bf16_full_eval = False
            args.fp16_full_eval = False
        elif os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32') == 'bfloat16':
            args.bf16_full_eval = True
            args.fp16_full_eval = False
        elif not bf16_full_eval and not fp16_full_eval:
            args.bf16_full_eval = args.bf16
            args.fp16_full_eval = args.fp16
        _output_logits = False
        if locals().get('compute_metrics', None) is not None: _output_logits = True
        if locals().get('preprocess_logits_for_metrics', None) is not None: _output_logits = True
        if _output_logits:
            os.environ['UNSLOTH_RETURN_LOGITS'] = '1'
        if 'max_seq_length' not in locals() and not hasattr(args, 'max_seq_length'):
            pass
        else:
            model_max_seq_length = getattr(model, 'max_seq_length', None)
            args_max_seq_length  = getattr(args,  'max_seq_length', None)
            if args_max_seq_length is None and model_max_seq_length is not None:
                max_seq_length = model.max_seq_length
                if hasattr(args, 'max_seq_length'): args.max_seq_length = max_seq_length
        if model is not None and hasattr(model, 'for_training'):
            model.for_training()
        if 'tokenizer' in locals() and hasattr(tokenizer, 'padding_side'): tokenizer.padding_side = 'right'
        if 'processing_class' in locals():
            if hasattr(processing_class, 'padding_side'): processing_class.padding_side = 'right'
            if hasattr(processing_class, 'tokenizer') and hasattr(processing_class.tokenizer, 'padding_side'): processing_class.tokenizer.padding_side = 'right'
        __tokenizer = processing_class if 'processing_class' in locals() else tokenizer
        from unsloth_zoo.vision_utils import UnslothVisionDataCollator
        if not isinstance(data_collator, UnslothVisionDataCollator):
            if isinstance(data_collator, DataCollatorForSeq2Seq) and 'labels' not in train_dataset.column_names:
                data_collator = DataCollatorForLanguageModeling(__tokenizer, mlm = False)
            elif isinstance(data_collator, DataCollatorForLanguageModeling) and 'labels' in train_dataset.column_names:
                data_collator = DataCollatorForSeq2Seq(__tokenizer)
        else:
            if hasattr(args, 'remove_unused_columns'): args.remove_unused_columns = False
            if hasattr(args, 'dataset_text_field'): args.dataset_text_field = ''
            if hasattr(args, 'dataset_kwargs'): args.dataset_kwargs = {'skip_prepare_dataset': True}
        if not isinstance(data_collator, UnslothVisionDataCollator):
            if not hasattr(__tokenizer, 'pad') and hasattr(__tokenizer, 'tokenizer'):
                if isinstance(data_collator, DataCollatorForSeq2Seq):
                    data_collator = DataCollatorForSeq2Seq(__tokenizer.tokenizer)
                else:
                    data_collator = DataCollatorForLanguageModeling(__tokenizer.tokenizer, mlm = False)
        other_metrics = []
        
        from unsloth_zoo.logging_utils import PatchRLStatistics
        PatchRLStatistics('cpo_trainer', other_metrics)
        
        super().__init__(
            model = model,
            args = args,
            data_collator = data_collator,
            train_dataset = train_dataset,
            eval_dataset = eval_dataset,
            processing_class = processing_class,
            model_init = model_init,
            callbacks = callbacks,
            preprocess_logits_for_metrics = preprocess_logits_for_metrics,
            peft_config = peft_config,
            compute_metrics = compute_metrics,**kwargs)
        if hasattr(self, 'neftune_hook_handle'):
            self.neftune_hook_handle.remove()
            if hasattr(self, 'neftune_hook_handle'): del self.neftune_hook_handle
        if getattr(args, 'neftune_noise_alpha', None) is not None:
            model.get_input_embeddings().neftune_noise_alpha = self.neftune_noise_alpha
        pass
        
pass