File size: 38,216 Bytes
d5eed08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
"""
2025.3.12
2025.3.14
4.48.3
0.15.2
__UNSLOTH_VERSIONING__
"""
from torch import Tensor
import torch
import torch.nn as nn
from torch.nn import functional as F
from trl.trainer.ddpo_trainer import (Accelerator, Any, Callable, DDPOConfig, DDPOStableDiffusionPipeline, DDPOTrainer, Optional, PerPromptStatTracker, ProjectConfiguration, PyTorchModelHubMixin, Union, defaultdict, futures, generate_model_card, get_comet_experiment_url, is_wandb_available, logger, os, set_seed, textwrap, torch, wandb, warn)


import os
from typing import *
from dataclasses import dataclass, field
from packaging.version import Version
import torch
import numpy as np
from contextlib import nullcontext
from torch.nn import functional as F
from transformers import DataCollatorForSeq2Seq, DataCollatorForLanguageModeling

torch_compile_options = {
    "epilogue_fusion"   : True,
    "max_autotune"      : False,
    "shape_padding"     : True,
    "trace.enabled"     : False,
    "triton.cudagraphs" : False,
}

@torch.compile(dynamic = True, fullgraph = True, options = torch_compile_options,)
def selective_log_softmax(logits, index):
    logits = logits.to(torch.float32)
    selected_logits = torch.gather(logits, dim = -1, index = index.unsqueeze(-1)).squeeze(-1)
    # loop to reduce peak mem consumption
    # logsumexp_values = torch.stack([torch.logsumexp(lg, dim=-1) for lg in logits])
    logsumexp_values = torch.logsumexp(logits, dim = -1)
    per_token_logps = selected_logits - logsumexp_values  # log_softmax(x_i) = x_i - logsumexp(x)
    return per_token_logps
@dataclass
class UnslothDDPOConfig(DDPOConfig):
    """
    
    Configuration class for the [`DDPOTrainer`].

    Using [`~transformers.HfArgumentParser`] we can turn this class into
    [argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the
    command line.

    Parameters:
        exp_name (`str`, *optional*, defaults to `os.path.basename(sys.argv[0])[: -len(".py")]`):
            Name of this experiment (by default is the file name without the extension name).
        run_name (`str`, *optional*, defaults to `""`):
            Name of this run.
        seed (`int`, *optional*, defaults to `0`):
            Random seed.
        log_with (`Literal["wandb", "tensorboard"]]` or `None`, *optional*, defaults to `None`):
            Log with either 'wandb' or 'tensorboard', check
            https://huggingface.co/docs/accelerate/usage_guides/tracking for more details.
        tracker_kwargs (`Dict`, *optional*, defaults to `{}`):
            Keyword arguments for the tracker (e.g. wandb_project).
        accelerator_kwargs (`Dict`, *optional*, defaults to `{}`):
            Keyword arguments for the accelerator.
        project_kwargs (`Dict`, *optional*, defaults to `{}`):
            Keyword arguments for the accelerator project config (e.g. `logging_dir`).
        tracker_project_name (`str`, *optional*, defaults to `"trl"`):
            Name of project to use for tracking.
        logdir (`str`, *optional*, defaults to `"logs"`):
            Top-level logging directory for checkpoint saving.
        num_epochs (`int`, *optional*, defaults to `100`):
            Number of epochs to train.
        save_freq (`int`, *optional*, defaults to `1`):
            Number of epochs between saving model checkpoints.
        num_checkpoint_limit (`int`, *optional*, defaults to `5`):
            Number of checkpoints to keep before overwriting old ones.
        mixed_precision (`str`, *optional*, defaults to `"fp16"`):
            Mixed precision training.
        allow_tf32 (`bool`, *optional*, defaults to `True`):
            Allow `tf32` on Ampere GPUs.
        resume_from (`str`, *optional*, defaults to `""`):
            Resume training from a checkpoint.
        sample_num_steps (`int`, *optional*, defaults to `50`):
            Number of sampler inference steps.
        sample_eta (`float`, *optional*, defaults to `1.0`):
            Eta parameter for the DDIM sampler.
        sample_guidance_scale (`float`, *optional*, defaults to `5.0`):
            Classifier-free guidance weight.
        sample_batch_size (`int`, *optional*, defaults to `1`):
            Batch size (per GPU) to use for sampling.
        sample_num_batches_per_epoch (`int`, *optional*, defaults to `2`):
            Number of batches to sample per epoch.
        train_batch_size (`int`, *optional*, defaults to `1`):
            Batch size (per GPU) to use for training.
        train_use_8bit_adam (`bool`, *optional*, defaults to `False`):
            Use 8bit Adam optimizer from bitsandbytes.
        train_learning_rate (`float`, *optional*, defaults to `3e-4`):
            Learning rate.
        train_adam_beta1 (`float`, *optional*, defaults to `0.9`):
            Adam beta1.
        train_adam_beta2 (`float`, *optional*, defaults to `0.999`):
            Adam beta2.
        train_adam_weight_decay (`float`, *optional*, defaults to `1e-4`):
            Adam weight decay.
        train_adam_epsilon (`float`, *optional*, defaults to `1e-8`):
            Adam epsilon.
        train_gradient_accumulation_steps (`int`, *optional*, defaults to `1`):
            Number of gradient accumulation steps.
        train_max_grad_norm (`float`, *optional*, defaults to `1.0`):
            Maximum gradient norm for gradient clipping.
        train_num_inner_epochs (`int`, *optional*, defaults to `1`):
            Number of inner epochs per outer epoch.
        train_cfg (`bool`, *optional*, defaults to `True`):
            Whether to use classifier-free guidance during training.
        train_adv_clip_max (`float`, *optional*, defaults to `5.0`):
            Clip advantages to the range.
        train_clip_range (`float`, *optional*, defaults to `1e-4`):
            PPO clip range.
        train_timestep_fraction (`float`, *optional*, defaults to `1.0`):
            Fraction of timesteps to train on.
        per_prompt_stat_tracking (`bool`, *optional*, defaults to `False`):
            Whether to track statistics for each prompt separately.
        per_prompt_stat_tracking_buffer_size (`int`, *optional*, defaults to `16`):
            Number of reward values to store in the buffer for each prompt.
        per_prompt_stat_tracking_min_count (`int`, *optional*, defaults to `16`):
            Minimum number of reward values to store in the buffer.
        async_reward_computation (`bool`, *optional*, defaults to `False`):
            Whether to compute rewards asynchronously.
        max_workers (`int`, *optional*, defaults to `2`):
            Maximum number of workers to use for async reward computation.
        negative_prompts (`str`, *optional*, defaults to `""`):
            Comma-separated list of prompts to use as negative examples.
        push_to_hub (`bool`, *optional*, defaults to `False`):
            Whether to push the final model checkpoint to the Hub.
    
    """
    vllm_sampling_params: Optional[Any] = field(
        default = None,
        metadata = {'help': 'vLLM SamplingParams'},
    )
    unsloth_num_chunks : Optional[int] = field(
        default = -1,
        metadata = {'help': 'Chunk size to reduce memory usage. -1 is most efficient.'},
    )
    def __init__(
        self,
        exp_name = 'colab_kernel_launcher',
        run_name = '',
        seed = 3407,
        log_with = None,
        tracker_project_name = 'trl',
        logdir = 'logs',
        num_epochs = 100,
        save_freq = 1,
        num_checkpoint_limit = 5,
        mixed_precision = 'fp16',
        allow_tf32 = True,
        resume_from = '',
        sample_num_steps = 50,
        sample_eta = 1.0,
        sample_guidance_scale = 5.0,
        sample_batch_size = 1,
        sample_num_batches_per_epoch = 2,
        train_batch_size = 1,
        train_use_8bit_adam = False,
        train_learning_rate = 5e-05,
        train_adam_beta1 = 0.9,
        train_adam_beta2 = 0.999,
        train_adam_weight_decay = 0.01,
        train_adam_epsilon = 1e-08,
        train_gradient_accumulation_steps = 2,
        train_max_grad_norm = 1.0,
        train_num_inner_epochs = 1,
        train_cfg = True,
        train_adv_clip_max = 5.0,
        train_clip_range = 0.0001,
        train_timestep_fraction = 1.0,
        per_prompt_stat_tracking = False,
        per_prompt_stat_tracking_buffer_size = 16,
        per_prompt_stat_tracking_min_count = 16,
        async_reward_computation = False,
        max_workers = 2,
        negative_prompts = '',
        push_to_hub = False,
        vllm_sampling_params = None,
        unsloth_num_chunks = -1,
        **kwargs,
    ):
        
        super().__init__(
            exp_name = exp_name,
            run_name = run_name,
            seed = seed,
            log_with = log_with,
            tracker_project_name = tracker_project_name,
            logdir = logdir,
            num_epochs = num_epochs,
            save_freq = save_freq,
            num_checkpoint_limit = num_checkpoint_limit,
            mixed_precision = mixed_precision,
            allow_tf32 = allow_tf32,
            resume_from = resume_from,
            sample_num_steps = sample_num_steps,
            sample_eta = sample_eta,
            sample_guidance_scale = sample_guidance_scale,
            sample_batch_size = sample_batch_size,
            sample_num_batches_per_epoch = sample_num_batches_per_epoch,
            train_batch_size = train_batch_size,
            train_use_8bit_adam = train_use_8bit_adam,
            train_learning_rate = train_learning_rate,
            train_adam_beta1 = train_adam_beta1,
            train_adam_beta2 = train_adam_beta2,
            train_adam_weight_decay = train_adam_weight_decay,
            train_adam_epsilon = train_adam_epsilon,
            train_gradient_accumulation_steps = train_gradient_accumulation_steps,
            train_max_grad_norm = train_max_grad_norm,
            train_num_inner_epochs = train_num_inner_epochs,
            train_cfg = train_cfg,
            train_adv_clip_max = train_adv_clip_max,
            train_clip_range = train_clip_range,
            train_timestep_fraction = train_timestep_fraction,
            per_prompt_stat_tracking = per_prompt_stat_tracking,
            per_prompt_stat_tracking_buffer_size = per_prompt_stat_tracking_buffer_size,
            per_prompt_stat_tracking_min_count = per_prompt_stat_tracking_min_count,
            async_reward_computation = async_reward_computation,
            max_workers = max_workers,
            negative_prompts = negative_prompts,
            push_to_hub = push_to_hub,**kwargs)
        self.vllm_sampling_params = vllm_sampling_params
        self.unsloth_num_chunks = unsloth_num_chunks
pass

class _UnslothDDPOTrainer(PyTorchModelHubMixin):
    """"""

    _tag_names = ["trl", "ddpo"]

    def __init__(
        self,
        config: DDPOConfig,
        reward_function: Callable[[torch.Tensor, tuple[str], tuple[Any]], torch.Tensor],
        prompt_function: Callable[[], tuple[str, Any]],
        sd_pipeline: DDPOStableDiffusionPipeline,
        image_samples_hook: Optional[Callable[[Any, Any, Any], Any]] = None,
    ):
        if image_samples_hook is None:
            warn("No image_samples_hook provided; no images will be logged")

        self.prompt_fn = prompt_function
        self.reward_fn = reward_function
        self.config = config
        self.image_samples_callback = image_samples_hook

        accelerator_project_config = ProjectConfiguration(**self.config.project_kwargs)

        if self.config.resume_from:
            self.config.resume_from = os.path.normpath(os.path.expanduser(self.config.resume_from))
            if "checkpoint_" not in os.path.basename(self.config.resume_from):
                # get the most recent checkpoint in this directory
                checkpoints = list(
                    filter(
                        lambda x: "checkpoint_" in x,
                        os.listdir(self.config.resume_from),
                    )
                )
                if len(checkpoints) == 0:
                    raise ValueError(f"No checkpoints found in {self.config.resume_from}")
                checkpoint_numbers = sorted([int(x.split("_")[-1]) for x in checkpoints])
                self.config.resume_from = os.path.join(
                    self.config.resume_from,
                    f"checkpoint_{checkpoint_numbers[-1]}",
                )

                accelerator_project_config.iteration = checkpoint_numbers[-1] + 1

        # number of timesteps within each trajectory to train on
        self.num_train_timesteps = int(self.config.sample_num_steps * self.config.train_timestep_fraction)

        self.accelerator = Accelerator(
            log_with=self.config.log_with,
            mixed_precision=self.config.mixed_precision,
            project_config=accelerator_project_config,
            # we always accumulate gradients across timesteps; we want config.train.gradient_accumulation_steps to be the
            # number of *samples* we accumulate across, so we need to multiply by the number of training timesteps to get
            # the total number of optimizer steps to accumulate across.
            gradient_accumulation_steps=self.config.train_gradient_accumulation_steps * self.num_train_timesteps,
            **self.config.accelerator_kwargs,
        )

        is_okay, message = self._config_check()
        if not is_okay:
            raise ValueError(message)

        is_using_tensorboard = config.log_with is not None and config.log_with == "tensorboard"

        if self.accelerator.is_main_process:
            self.accelerator.init_trackers(
                self.config.tracker_project_name,
                config=dict(ddpo_trainer_config=config.to_dict()) if not is_using_tensorboard else config.to_dict(),
                init_kwargs=self.config.tracker_kwargs,
            )

        logger.info(f"\n{config}")

        set_seed(self.config.seed, device_specific=True)

        self.sd_pipeline = sd_pipeline

        self.sd_pipeline.set_progress_bar_config(
            position=1,
            disable=not self.accelerator.is_local_main_process,
            leave=False,
            desc="Timestep",
            dynamic_ncols=True,
        )

        # For mixed precision training we cast all non-trainable weights (vae, non-lora text_encoder and non-lora unet) to half-precision
        # as these weights are only used for inference, keeping weights in full precision is not required.
        if self.accelerator.mixed_precision == "fp16":
            inference_dtype = torch.float16
        elif self.accelerator.mixed_precision == "bf16":
            inference_dtype = torch.bfloat16
        else:
            inference_dtype = torch.float32

        self.sd_pipeline.vae.to(self.accelerator.device, dtype=inference_dtype)
        self.sd_pipeline.text_encoder.to(self.accelerator.device, dtype=inference_dtype)
        self.sd_pipeline.unet.to(self.accelerator.device, dtype=inference_dtype)

        trainable_layers = self.sd_pipeline.get_trainable_layers()

        self.accelerator.register_save_state_pre_hook(self._save_model_hook)
        self.accelerator.register_load_state_pre_hook(self._load_model_hook)

        # Enable TF32 for faster training on Ampere GPUs,
        # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
        if self.config.allow_tf32:
            torch.backends.cuda.matmul.allow_tf32 = True

        self.optimizer = self._setup_optimizer(
            trainable_layers.parameters() if not isinstance(trainable_layers, list) else trainable_layers
        )

        self.neg_prompt_embed = self.sd_pipeline.text_encoder(
            self.sd_pipeline.tokenizer(
                [""] if self.config.negative_prompts is None else self.config.negative_prompts,
                return_tensors="pt",
                padding="max_length",
                truncation=True,
                max_length=self.sd_pipeline.tokenizer.model_max_length,
            ).input_ids.to(self.accelerator.device)
        )[0]

        if config.per_prompt_stat_tracking:
            self.stat_tracker = PerPromptStatTracker(
                config.per_prompt_stat_tracking_buffer_size,
                config.per_prompt_stat_tracking_min_count,
            )

        # NOTE: for some reason, autocast is necessary for non-lora training but for lora training it isn't necessary and it uses
        # more memory
        self.autocast = self.sd_pipeline.autocast or self.accelerator.autocast

        if hasattr(self.sd_pipeline, "use_lora") and self.sd_pipeline.use_lora:
            unet, self.optimizer = self.accelerator.prepare(trainable_layers, self.optimizer)
            self.trainable_layers = list(filter(lambda p: p.requires_grad, unet.parameters()))
        else:
            self.trainable_layers, self.optimizer = self.accelerator.prepare(trainable_layers, self.optimizer)

        if self.config.async_reward_computation:
            self.executor = futures.ThreadPoolExecutor(max_workers=config.max_workers)

        if config.resume_from:
            logger.info(f"Resuming from {config.resume_from}")
            self.accelerator.load_state(config.resume_from)
            self.first_epoch = int(config.resume_from.split("_")[-1]) + 1
        else:
            self.first_epoch = 0

    def compute_rewards(self, prompt_image_pairs, is_async=False):
        if not is_async:
            rewards = []
            for images, prompts, prompt_metadata in prompt_image_pairs:
                reward, reward_metadata = self.reward_fn(images, prompts, prompt_metadata)
                rewards.append(
                    (
                        torch.as_tensor(reward, device=self.accelerator.device),
                        reward_metadata,
                    )
                )
        else:
            rewards = self.executor.map(lambda x: self.reward_fn(*x), prompt_image_pairs)
            rewards = [
                (torch.as_tensor(reward.result(), device=self.accelerator.device), reward_metadata.result())
                for reward, reward_metadata in rewards
            ]

        return zip(*rewards)

    def step(self, epoch: int, global_step: int):
        """
        Perform a single step of training.

        Args:
            epoch (int): The current epoch.
            global_step (int): The current global step.

        Side Effects:
            - Model weights are updated
            - Logs the statistics to the accelerator trackers.
            - If `self.image_samples_callback` is not None, it will be called with the prompt_image_pairs, global_step, and the accelerator tracker.

        Returns:
            global_step (int): The updated global step.

        """
        samples, prompt_image_data = self._generate_samples(
            iterations=self.config.sample_num_batches_per_epoch,
            batch_size=self.config.sample_batch_size,
        )

        # collate samples into dict where each entry has shape (num_batches_per_epoch * sample.batch_size, ...)
        samples = {k: torch.cat([s[k] for s in samples]) for k in samples[0].keys()}
        rewards, rewards_metadata = self.compute_rewards(
            prompt_image_data, is_async=self.config.async_reward_computation
        )

        for i, image_data in enumerate(prompt_image_data):
            image_data.extend([rewards[i], rewards_metadata[i]])

        if self.image_samples_callback is not None:
            self.image_samples_callback(prompt_image_data, global_step, self.accelerator.trackers[0])

        rewards = torch.cat(rewards)
        rewards = self.accelerator.gather(rewards).cpu().numpy()

        self.accelerator.log(
            {
                "reward": rewards,
                "epoch": epoch,
                "reward_mean": rewards.mean(),
                "reward_std": rewards.std(),
            },
            step=global_step,
        )

        if self.config.per_prompt_stat_tracking:
            # gather the prompts across processes
            prompt_ids = self.accelerator.gather(samples["prompt_ids"]).cpu().numpy()
            prompts = self.sd_pipeline.tokenizer.batch_decode(prompt_ids, skip_special_tokens=True)
            advantages = self.stat_tracker.update(prompts, rewards)
        else:
            advantages = (rewards - rewards.mean()) / (rewards.std() + 1e-8)

        # ungather advantages;  keep the entries corresponding to the samples on this process
        samples["advantages"] = (
            torch.as_tensor(advantages)
            .reshape(self.accelerator.num_processes, -1)[self.accelerator.process_index]
            .to(self.accelerator.device)
        )

        del samples["prompt_ids"]

        total_batch_size, num_timesteps = samples["timesteps"].shape

        for inner_epoch in range(self.config.train_num_inner_epochs):
            # shuffle samples along batch dimension
            perm = torch.randperm(total_batch_size, device=self.accelerator.device)
            samples = {k: v[perm] for k, v in samples.items()}

            # shuffle along time dimension independently for each sample
            # still trying to understand the code below
            perms = torch.stack(
                [torch.randperm(num_timesteps, device=self.accelerator.device) for _ in range(total_batch_size)]
            )

            for key in ["timesteps", "latents", "next_latents", "log_probs"]:
                samples[key] = samples[key][
                    torch.arange(total_batch_size, device=self.accelerator.device)[:, None],
                    perms,
                ]

            original_keys = samples.keys()
            original_values = samples.values()
            # rebatch them as user defined train_batch_size is different from sample_batch_size
            reshaped_values = [v.reshape(-1, self.config.train_batch_size, *v.shape[1:]) for v in original_values]

            # Transpose the list of original values
            transposed_values = zip(*reshaped_values)
            # Create new dictionaries for each row of transposed values
            samples_batched = [dict(zip(original_keys, row_values)) for row_values in transposed_values]

            self.sd_pipeline.unet.train()
            global_step = self._train_batched_samples(inner_epoch, epoch, global_step, samples_batched)
            # ensure optimization step at the end of the inner epoch
            if not self.accelerator.sync_gradients:
                raise ValueError(
                    "Optimization step should have been performed by this point. Please check calculated gradient accumulation settings."
                )

        if epoch != 0 and epoch % self.config.save_freq == 0 and self.accelerator.is_main_process:
            self.accelerator.save_state()

        return global_step

    def calculate_loss(self, latents, timesteps, next_latents, log_probs, advantages, embeds):
        """
        Calculate the loss for a batch of an unpacked sample

        Args:
            latents (torch.Tensor):
                The latents sampled from the diffusion model, shape: [batch_size, num_channels_latents, height, width]
            timesteps (torch.Tensor):
                The timesteps sampled from the diffusion model, shape: [batch_size]
            next_latents (torch.Tensor):
                The next latents sampled from the diffusion model, shape: [batch_size, num_channels_latents, height, width]
            log_probs (torch.Tensor):
                The log probabilities of the latents, shape: [batch_size]
            advantages (torch.Tensor):
                The advantages of the latents, shape: [batch_size]
            embeds (torch.Tensor):
                The embeddings of the prompts, shape: [2*batch_size or batch_size, ...]
                Note: the "or" is because if train_cfg is True, the expectation is that negative prompts are concatenated to the embeds

        Returns:
            loss (torch.Tensor), approx_kl (torch.Tensor), clipfrac (torch.Tensor)
            (all of these are of shape (1,))
        """
        with self.autocast():
            if self.config.train_cfg:
                noise_pred = self.sd_pipeline.unet(
                    torch.cat([latents] * 2),
                    torch.cat([timesteps] * 2),
                    embeds,
                ).sample
                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                noise_pred = noise_pred_uncond + self.config.sample_guidance_scale * (
                    noise_pred_text - noise_pred_uncond
                )
            else:
                noise_pred = self.sd_pipeline.unet(
                    latents,
                    timesteps,
                    embeds,
                ).sample
            # compute the log prob of next_latents given latents under the current model

            scheduler_step_output = self.sd_pipeline.scheduler_step(
                noise_pred,
                timesteps,
                latents,
                eta=self.config.sample_eta,
                prev_sample=next_latents,
            )

            log_prob = scheduler_step_output.log_probs

        advantages = torch.clamp(
            advantages,
            -self.config.train_adv_clip_max,
            self.config.train_adv_clip_max,
        )

        ratio = torch.exp(log_prob - log_probs)

        loss = self.loss(advantages, self.config.train_clip_range, ratio)

        approx_kl = 0.5 * torch.mean((log_prob - log_probs) ** 2)

        clipfrac = torch.mean((torch.abs(ratio - 1.0) > self.config.train_clip_range).float())

        return loss, approx_kl, clipfrac

    def loss(
        self,
        advantages: torch.Tensor,
        clip_range: float,
        ratio: torch.Tensor,
    ):
        unclipped_loss = -advantages * ratio
        clipped_loss = -advantages * torch.clamp(
            ratio,
            1.0 - clip_range,
            1.0 + clip_range,
        )
        return torch.mean(torch.maximum(unclipped_loss, clipped_loss))

    def _setup_optimizer(self, trainable_layers_parameters):
        if self.config.train_use_8bit_adam:
            import bitsandbytes

            optimizer_cls = bitsandbytes.optim.AdamW8bit
        else:
            optimizer_cls = torch.optim.AdamW

        return optimizer_cls(
            trainable_layers_parameters,
            lr=self.config.train_learning_rate,
            betas=(self.config.train_adam_beta1, self.config.train_adam_beta2),
            weight_decay=self.config.train_adam_weight_decay,
            eps=self.config.train_adam_epsilon,
        )

    def _save_model_hook(self, models, weights, output_dir):
        self.sd_pipeline.save_checkpoint(models, weights, output_dir)
        weights.pop()  # ensures that accelerate doesn't try to handle saving of the model

    def _load_model_hook(self, models, input_dir):
        self.sd_pipeline.load_checkpoint(models, input_dir)
        models.pop()  # ensures that accelerate doesn't try to handle loading of the model

    def _generate_samples(self, iterations, batch_size):
        """
        Generate samples from the model

        Args:
            iterations (int): Number of iterations to generate samples for
            batch_size (int): Batch size to use for sampling

        Returns:
            samples (list[dict[str, torch.Tensor]]), prompt_image_pairs (list[list[Any]])
        """
        samples = []
        prompt_image_pairs = []
        self.sd_pipeline.unet.eval()

        sample_neg_prompt_embeds = self.neg_prompt_embed.repeat(batch_size, 1, 1)

        for _ in range(iterations):
            prompts, prompt_metadata = zip(*[self.prompt_fn() for _ in range(batch_size)])

            prompt_ids = self.sd_pipeline.tokenizer(
                prompts,
                return_tensors="pt",
                padding="max_length",
                truncation=True,
                max_length=self.sd_pipeline.tokenizer.model_max_length,
            ).input_ids.to(self.accelerator.device)
            prompt_embeds = self.sd_pipeline.text_encoder(prompt_ids)[0]

            with self.autocast():
                sd_output = self.sd_pipeline(
                    prompt_embeds=prompt_embeds,
                    negative_prompt_embeds=sample_neg_prompt_embeds,
                    num_inference_steps=self.config.sample_num_steps,
                    guidance_scale=self.config.sample_guidance_scale,
                    eta=self.config.sample_eta,
                    output_type="pt",
                )

                images = sd_output.images
                latents = sd_output.latents
                log_probs = sd_output.log_probs

            latents = torch.stack(latents, dim=1)  # (batch_size, num_steps + 1, ...)
            log_probs = torch.stack(log_probs, dim=1)  # (batch_size, num_steps, 1)
            timesteps = self.sd_pipeline.scheduler.timesteps.repeat(batch_size, 1)  # (batch_size, num_steps)

            samples.append(
                {
                    "prompt_ids": prompt_ids,
                    "prompt_embeds": prompt_embeds,
                    "timesteps": timesteps,
                    "latents": latents[:, :-1],  # each entry is the latent before timestep t
                    "next_latents": latents[:, 1:],  # each entry is the latent after timestep t
                    "log_probs": log_probs,
                    "negative_prompt_embeds": sample_neg_prompt_embeds,
                }
            )
            prompt_image_pairs.append([images, prompts, prompt_metadata])

        return samples, prompt_image_pairs

    def _train_batched_samples(self, inner_epoch, epoch, global_step, batched_samples):
        """
        Train on a batch of samples. Main training segment

        Args:
            inner_epoch (int): The current inner epoch
            epoch (int): The current epoch
            global_step (int): The current global step
            batched_samples (list[dict[str, torch.Tensor]]): The batched samples to train on

        Side Effects:
            - Model weights are updated
            - Logs the statistics to the accelerator trackers.

        Returns:
            global_step (int): The updated global step
        """
        info = defaultdict(list)
        for _i, sample in enumerate(batched_samples):
            if self.config.train_cfg:
                # concat negative prompts to sample prompts to avoid two forward passes
                embeds = torch.cat([sample["negative_prompt_embeds"], sample["prompt_embeds"]])
            else:
                embeds = sample["prompt_embeds"]

            for j in range(self.num_train_timesteps):
                with self.accelerator.accumulate(self.sd_pipeline.unet):
                    loss, approx_kl, clipfrac = self.calculate_loss(
                        sample["latents"][:, j],
                        sample["timesteps"][:, j],
                        sample["next_latents"][:, j],
                        sample["log_probs"][:, j],
                        sample["advantages"],
                        embeds,
                    )
                    info["approx_kl"].append(approx_kl)
                    info["clipfrac"].append(clipfrac)
                    info["loss"].append(loss)

                    self.accelerator.backward(loss)
                    if self.accelerator.sync_gradients:
                        self.accelerator.clip_grad_norm_(
                            self.trainable_layers.parameters()
                            if not isinstance(self.trainable_layers, list)
                            else self.trainable_layers,
                            self.config.train_max_grad_norm,
                        )
                    self.optimizer.step()
                    self.optimizer.zero_grad()

                # Checks if the accelerator has performed an optimization step behind the scenes
                if self.accelerator.sync_gradients:
                    # log training-related stuff
                    info = {k: torch.mean(torch.stack(v)) for k, v in info.items()}
                    info = self.accelerator.reduce(info, reduction="mean")
                    info.update({"epoch": epoch, "inner_epoch": inner_epoch})
                    self.accelerator.log(info, step=global_step)
                    global_step += 1
                    info = defaultdict(list)
        return global_step

    def _config_check(self) -> tuple[bool, str]:
        samples_per_epoch = (
            self.config.sample_batch_size * self.accelerator.num_processes * self.config.sample_num_batches_per_epoch
        )
        total_train_batch_size = (
            self.config.train_batch_size
            * self.accelerator.num_processes
            * self.config.train_gradient_accumulation_steps
        )

        if not self.config.sample_batch_size >= self.config.train_batch_size:
            return (
                False,
                f"Sample batch size ({self.config.sample_batch_size}) must be greater than or equal to the train batch size ({self.config.train_batch_size})",
            )
        if not self.config.sample_batch_size % self.config.train_batch_size == 0:
            return (
                False,
                f"Sample batch size ({self.config.sample_batch_size}) must be divisible by the train batch size ({self.config.train_batch_size})",
            )
        if not samples_per_epoch % total_train_batch_size == 0:
            return (
                False,
                f"Number of samples per epoch ({samples_per_epoch}) must be divisible by the total train batch size ({total_train_batch_size})",
            )
        return True, ""

    def train(self, epochs: Optional[int] = None):
        """
        Train the model for a given number of epochs
        """
        global_step = 0
        if epochs is None:
            epochs = self.config.num_epochs
        for epoch in range(self.first_epoch, epochs):
            global_step = self.step(epoch, global_step)

    def _save_pretrained(self, save_directory):
        self.sd_pipeline.save_pretrained(save_directory)
        self.create_model_card()

    def create_model_card(
        self,
        model_name: Optional[str] = None,
        dataset_name: Optional[str] = None,
        tags: Union[str, list[str], None] = None,
    ):
        """
        Creates a draft of a model card using the information available to the `Trainer`.

        Args:
            model_name (`str` or `None`, *optional*, defaults to `None`):
                Name of the model.
            dataset_name (`str` or `None`, *optional*, defaults to `None`):
                Name of the dataset used for training.
            tags (`str`, `list[str]` or `None`, *optional*, defaults to `None`):
                Tags to be associated with the model card.
        """
        if not self.is_world_process_zero():
            return

        if hasattr(self.model.config, "_name_or_path") and not os.path.isdir(self.model.config._name_or_path):
            base_model = self.model.config._name_or_path
        else:
            base_model = None

        tags = tags or []
        if isinstance(tags, str):
            tags = [tags]

        if hasattr(self.model.config, "unsloth_version"):
            tags.append("unsloth")

        citation = textwrap.dedent("""\
        @inproceedings{black2024training,
            title        = {{Training Diffusion Models with Reinforcement Learning}},
            author       = {Kevin Black and Michael Janner and Yilun Du and Ilya Kostrikov and Sergey Levine},
            year         = 2024,
            booktitle    = {The Twelfth International Conference on Learning Representations, {ICLR} 2024, Vienna, Austria, May 7-11, 2024},
            publisher    = {OpenReview.net},
            url          = {https://openreview.net/forum?id=YCWjhGrJFD},
        }""")

        model_card = generate_model_card(
            base_model=base_model,
            model_name=model_name,
            hub_model_id=self.hub_model_id,
            dataset_name=dataset_name,
            tags=tags,
            wandb_url=wandb.run.get_url() if is_wandb_available() and wandb.run is not None else None,
            comet_url=get_comet_experiment_url(),
            trainer_name="DDPO",
            trainer_citation=citation,
            paper_title="Training Diffusion Models with Reinforcement Learning",
            paper_id="2305.13301",
        )

        model_card.save(os.path.join(self.args.output_dir, "README.md"))
class UnslothDDPOTrainer(_UnslothDDPOTrainer):
    """
    
    The DDPOTrainer uses Deep Diffusion Policy Optimization to optimise diffusion models.
    Note, this trainer is heavily inspired by the work here: https://github.com/kvablack/ddpo-pytorch
    As of now only Stable Diffusion based pipelines are supported

    Attributes:
        **config** (`DDPOConfig`) -- Configuration object for DDPOTrainer. Check the documentation of `PPOConfig` for more
         details.
        **reward_function** (Callable[[torch.Tensor, tuple[str], tuple[Any]], torch.Tensor]) -- Reward function to be used
        **prompt_function** (Callable[[], tuple[str, Any]]) -- Function to generate prompts to guide model
        **sd_pipeline** (`DDPOStableDiffusionPipeline`) -- Stable Diffusion pipeline to be used for training.
        **image_samples_hook** (Optional[Callable[[Any, Any, Any], Any]]) -- Hook to be called to log images
    
    """
    def __init__(
        self,
        config,
        reward_function,
        prompt_function,
        sd_pipeline,
        image_samples_hook = None,
        **kwargs
    ):
        if args is None: args = UnslothDDPOConfig()
        other_metrics = []
        
        from unsloth_zoo.logging_utils import PatchRLStatistics
        PatchRLStatistics('ddpo_trainer', other_metrics)
        
        super().__init__(
            config = config,
            reward_function = reward_function,
            prompt_function = prompt_function,
            sd_pipeline = sd_pipeline,
            image_samples_hook = image_samples_hook,**kwargs)
        
pass