File size: 74,636 Bytes
d5eed08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
"""
2025.3.12
2025.3.14
4.48.3
0.15.2
__UNSLOTH_VERSIONING__
"""
from torch import Tensor
import torch
import torch.nn as nn
from torch.nn import functional as F
from trl.trainer.grpo_trainer import (Any, AutoModelForCausalLM, AutoModelForSequenceClassification, AutoTokenizer, Dataset, GRPOConfig, GRPOTrainer, GenerationConfig, IterableDataset, Optional, PeftConfig, PreTrainedModel, PreTrainedTokenizerBase, RepeatRandomSampler, RewardFunc, Sampler, SyncRefModelCallback, Trainer, TrainerCallback, Union, apply_chat_template, broadcast_object_list, create_reference_model, defaultdict, gather, gather_object, generate_model_card, get_comet_experiment_url, is_conversational, is_deepspeed_zero3_enabled, is_peft_model, is_wandb_available, maybe_apply_chat_template, nn, os, pad, patch, prepare_deepspeed, set_seed, textwrap, torch, transformers, unwrap_model_for_generation, version, wandb, warnings, os, torch, transformers, Any, Union, apply_chat_template, broadcast_object_list, gather, gather_object, is_conversational, maybe_apply_chat_template, nn, os, pad, torch, unwrap_model_for_generation, wandb, GRPOTrainer, Trainer, gather, os, torch)


import os
from typing import *
from dataclasses import dataclass, field
from packaging.version import Version
import torch
import numpy as np
from contextlib import nullcontext
from torch.nn import functional as F
from transformers import DataCollatorForSeq2Seq, DataCollatorForLanguageModeling

torch_compile_options = {
    "epilogue_fusion"   : True,
    "max_autotune"      : False,
    "shape_padding"     : True,
    "trace.enabled"     : False,
    "triton.cudagraphs" : False,
}

@torch.compile(dynamic = True, fullgraph = True, options = torch_compile_options,)
def selective_log_softmax(logits, index):
    logits = logits.to(torch.float32)
    selected_logits = torch.gather(logits, dim = -1, index = index.unsqueeze(-1)).squeeze(-1)
    # loop to reduce peak mem consumption
    # logsumexp_values = torch.stack([torch.logsumexp(lg, dim=-1) for lg in logits])
    logsumexp_values = torch.logsumexp(logits, dim = -1)
    per_token_logps = selected_logits - logsumexp_values  # log_softmax(x_i) = x_i - logsumexp(x)
    return per_token_logps

def grpo_compute_loss(old_logits, new_logits, input_ids, mask, beta, advantages):
    # All Unsloth Zoo code licensed under LGPLv3
    old_logits = old_logits.to(torch.float32)
    new_logits = new_logits.to(torch.float32)
    input_ids  = input_ids.unsqueeze(-1)

    # x_i - logsumexp(x_i)
    old_x = torch.gather(old_logits, dim = -1, index = input_ids).squeeze(-1)
    new_x = torch.gather(new_logits, dim = -1, index = input_ids).squeeze(-1)
    old = old_x - torch.logsumexp(old_logits, dim = -1)
    new = new_x - torch.logsumexp(new_logits, dim = -1)

    # Reverse KL
    kl_i = torch.exp(old - new) - (old - new) - 1.0
    # Full correct reverse KL divergence?? Missing term maybe?
    # kl_i = torch.exp(new) * kl_i

    # Below is forward KL (normal KL)
    # kl_i = torch.exp(old) * (old - new)

    # Must detach - otherwise gradients are not propagated correctly!
    # exp(x - x) == 1
    loss_i = torch.exp(new - new.detach()) * advantages.unsqueeze(1)
    loss_i = -(loss_i - beta * kl_i)

    mask = mask.to(torch.float32)
    n_mask_per_reward = mask.sum(1)

    # See https://github.com/huggingface/trl/pull/2881
    # loss_per_reward = (loss_i * mask).sum(1) / n_mask_per_reward
    # loss = loss_per_reward.mean()
    loss = (loss_i * mask).sum() / mask.sum()
    
    # Get metrics as well which are folded
    with torch.inference_mode():
        completion_length = n_mask_per_reward.mean()
        mean_kl_per_reward = (kl_i * mask).sum(1) / n_mask_per_reward
        mean_kl = mean_kl_per_reward.mean()
    pass
    return loss, completion_length, mean_kl

class UnslothEfficientGRPO(torch.autograd.Function):
    # All Unsloth Zoo code licensed under LGPLv3
    @staticmethod
    def forward(ctx, _new_hidden_states, _old_hidden_states, lm_head, _input_ids, _mask, _advantages, beta, scaler = None, n_chunks = 1):
        def compute_loss(new_hidden_states, old_hidden_states, input_ids, mask, advantages, scaling):
            new_logits = torch.matmul(new_hidden_states, lm_head.t())
            new_logits = new_logits[:, :-1, :] # exclude the last logit: it corresponds to the next token pred
            old_logits = torch.matmul(old_hidden_states, lm_head.t())
            old_logits = old_logits[:, :-1, :] # exclude the last logit: it corresponds to the next token pred
            loss, completion_length, mean_kl = grpo_compute_loss(
                old_logits, new_logits, input_ids, mask, beta, advantages,
            )
            # Scale loss if needed for mixed precision training
            scaled_loss = loss * scaling
            # Must add .loss.detach otherwise autograd uses 2x VRAM
            return scaled_loss, (loss.detach(), completion_length, mean_kl,)
        pass

        device =_new_hidden_states.device
        grad_inputs = torch.empty_like(_new_hidden_states)
        accumulated_loss              = torch.zeros(1, device = device)
        accumulated_completion_length = torch.zeros(1, device = device)
        accumulated_mean_kl           = torch.zeros(1, device = device)

        def accumulate_chunk(new_hidden_states_j, old_hidden_states_j, input_ids_j, mask_j, advantages_j, scaling):
            (chunk_grad_input,), (chunk_loss, (unscaled_loss, chunk_completion_length, chunk_mean_kl,)) = torch.func.grad_and_value(
                compute_loss,
                argnums = (0,),
                has_aux = True,
            )(new_hidden_states_j, old_hidden_states_j, input_ids_j, mask_j, advantages_j, scaling)
            accumulated_loss             .add_(unscaled_loss)
            accumulated_completion_length.add_(chunk_completion_length)
            accumulated_mean_kl          .add_(chunk_mean_kl)
            return chunk_grad_input
        pass

        accumulate_chunk = torch.compile(
            accumulate_chunk,
            fullgraph = True,
            options = torch_compile_options,
        )

        grad_inputs_chunks = torch.chunk(grad_inputs,        chunks = n_chunks, dim = 0)
        new_hidden_states  = torch.chunk(_new_hidden_states, chunks = n_chunks, dim = 0)
        old_hidden_states  = torch.chunk(_old_hidden_states, chunks = n_chunks, dim = 0)
        input_ids          = torch.chunk(_input_ids,         chunks = n_chunks, dim = 0)
        mask               = torch.chunk(_mask,              chunks = n_chunks, dim = 0)
        advantages         = torch.chunk(_advantages,        chunks = n_chunks, dim = 0)

        # Get mixed precision scaling if seen
        scaling = scaler.get_scale() if scaler is not None else 1.0

        # Force torch.compile to use dynamic shapes for seqlen dim
        mark_dynamic = lambda x: torch._dynamo.mark_dynamic(x, 1)

        for (grad_inputs_j, new_hidden_states_j, old_hidden_states_j, input_ids_j, mask_j, advantages_j,) in \
            zip(grad_inputs_chunks, new_hidden_states, old_hidden_states, input_ids, mask, advantages):

            mark_dynamic(new_hidden_states_j)
            mark_dynamic(old_hidden_states_j)
            mark_dynamic(input_ids_j)
            mark_dynamic(mask_j)

            grad_inputs_j.copy_(
                accumulate_chunk(new_hidden_states_j, old_hidden_states_j, input_ids_j, mask_j, advantages_j, scaling)
            )
        pass

        grad_inputs                  .div_(n_chunks)
        accumulated_loss             .div_(n_chunks)
        accumulated_completion_length.div_(n_chunks)
        accumulated_mean_kl          .div_(n_chunks)
        ctx.save_for_backward(grad_inputs)

        return (
            accumulated_loss,
            accumulated_completion_length,
            accumulated_mean_kl,
        )
    pass

    @staticmethod
    def backward(ctx, grad_output, dcompletion_length, dmean_kl):
        (grad_input,) = ctx.saved_tensors
        return (grad_input, None, None, None, None, None, None, None, None,)
    pass

def grpo_accumulated_loss(
    trainer,
    input_ids,
    logits_to_keep,
    completion_mask,
    advantages,
    n_chunks = -1,
):
    # All Unsloth Zoo code licensed under LGPLv3
    bsz, qlen = input_ids.shape
    # Find closest multiple
    factors = [i for i in range(1, bsz + 1) if bsz % i == 0]
    if n_chunks == -1: n_chunks = bsz
    n_chunks = factors[min(np.searchsorted(factors, n_chunks), len(factors)-1)]

    mixed_dtype = torch.float16 if os.environ.get('ACCELERATE_MIXED_PRECISION', 'fp16') == 'fp16' else torch.bfloat16
    os.environ["UNSLOTH_RETURN_HIDDEN_STATES"] = "1"

    completion_input_ids = input_ids[:, -logits_to_keep:]
    lm_head = trainer.model.get_output_embeddings().weight

    with torch.amp.autocast(device_type = "cuda", dtype = mixed_dtype):
        with torch.inference_mode(), trainer.accelerator.unwrap_model(trainer.model, keep_fp32_wrapper = False).disable_adapter():
            old_hidden_states = trainer.model(input_ids = input_ids, logits_to_keep = logits_to_keep + 1).logits
        pass

        new_hidden_states = trainer.model(input_ids = input_ids, logits_to_keep = logits_to_keep + 1).logits
        
        loss, completion_length, mean_kl = UnslothEfficientGRPO.apply(
            new_hidden_states, old_hidden_states, lm_head,
            completion_input_ids, completion_mask, advantages, trainer.beta,
            trainer.accelerator.scaler,
            n_chunks, 
        )
        return loss, completion_length, mean_kl

        # Old non efficient code path
        new_logits = torch.matmul(new_hidden_states, lm_head.t())
        new_logits = new_logits[:, :-1, :] # exclude the last logit: it corresponds to the next token pred
        old_logits = torch.matmul(old_hidden_states, lm_head.t())
        old_logits = old_logits[:, :-1, :] # exclude the last logit: it corresponds to the next token pred
        loss, completion_length, mean_kl = grpo_compute_loss(
            old_logits, new_logits, completion_input_ids, completion_mask, trainer.beta, advantages,
        )
        return loss, completion_length, mean_kl
    pass

@torch.compile(dynamic = True, fullgraph = True, options = torch_compile_options)
def grpo_compute_loss_slow(old_logits, new_logits, input_ids, mask, beta, advantages):
    # All Unsloth Zoo code licensed under LGPLv3
    old_logits = old_logits.to(torch.float32)
    new_logits = new_logits.to(torch.float32)
    input_ids  = input_ids.unsqueeze(-1)

    # x_i - logsumexp(x_i)
    old_x = torch.gather(old_logits, dim = -1, index = input_ids).squeeze(-1)
    new_x = torch.gather(new_logits, dim = -1, index = input_ids).squeeze(-1)
    old = old_x - torch.logsumexp(old_logits, dim = -1)
    new = new_x - torch.logsumexp(new_logits, dim = -1)

    # Reverse KL
    kl_i = torch.exp(old - new) - (old - new) - 1.0
    # Full correct reverse KL divergence?? Missing term maybe?
    # kl_i = torch.exp(new) * kl_i

    # Below is forward KL (normal KL)
    # kl_i = torch.exp(old) * (old - new)

    # Must detach - otherwise gradients are not propagated correctly!
    # exp(x - x) == 1
    loss_i = torch.exp(new - new.detach()) * advantages.unsqueeze(1)
    loss_i = -(loss_i - beta * kl_i)

    mask = mask.to(torch.float32)
    n_mask_per_reward = mask.sum(1)

    # See https://github.com/huggingface/trl/pull/2881
    # loss_per_reward = (loss_i * mask).sum(1) / n_mask_per_reward
    # loss = loss_per_reward.mean()
    loss = (loss_i * mask).sum() / mask.sum()
    
    # Get metrics as well which are folded
    with torch.inference_mode():
        completion_length = n_mask_per_reward.mean()
        mean_kl_per_reward = (kl_i * mask).sum(1) / n_mask_per_reward
        mean_kl = mean_kl_per_reward.mean()
    pass
    return loss, completion_length, mean_kl

def vLLMSamplingParams(**kwargs):
    from vllm import SamplingParams
    sampling_params = SamplingParams(**kwargs)
    sampling_params._set_kwargs = kwargs
    return sampling_params
@dataclass
class UnslothGRPOConfig(GRPOConfig):
    """
    
    Configuration class for the [`GRPOTrainer`].

    Only the parameters specific to GRPO training are listed here. For details on other parameters, refer to the
    [`~transformers.TrainingArguments`] documentation.

    Using [`~transformers.HfArgumentParser`] we can turn this class into
    [argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the
    command line.

    Parameters:
        > Parameters that control the model and reference model

        model_init_kwargs (`dict[str, Any]` or `None`, *optional*, defaults to `None`):
            Keyword arguments for [`~transformers.AutoModelForCausalLM.from_pretrained`], used when the `model`
            argument of the [`GRPOTrainer`] is provided as a string.

        > Parameters that control the data preprocessing

        remove_unused_columns (`bool`, *optional*, defaults to `False`):
            Whether to only keep the column `"prompt"` in the dataset. If you use a custom reward function that
            requires any column other than `"prompts"` and `"completions"`, you should keep this to `False`.
        max_prompt_length (`int` or `None`, *optional*, defaults to `512`):
            Maximum length of the prompt. If the prompt is longer than this value, it will be truncated left.
        num_generations (`int` or `None`, *optional*, defaults to `8`):
            Number of generations per prompt to sample. The global batch size (num_processes * per_device_batch_size)
            must be divisible by this value.
        temperature (`float`, *optional*, defaults to `0.9`):
            Temperature for sampling. The higher the temperature, the more random the completions.
        max_completion_length (`int` or `None`, *optional*, defaults to `256`):
            Maximum length of the generated completion.
        ds3_gather_for_generation (`bool`, *optional*, defaults to `True`):
            This setting applies to DeepSpeed ZeRO-3. If enabled, the policy model weights are gathered for generation,
            improving generation speed. However, disabling this option allows training models that exceed the VRAM
            capacity of a single GPU, albeit at the cost of slower generation. Disabling this option is not compatible
            with vLLM generation.

        > Parameters that control generation acceleration powered by vLLM

        use_vllm (`bool`, *optional*, defaults to `False`):
            Whether to use vLLM for generating completions. If set to `True`, ensure that a GPU is kept unused for
            training, as vLLM will require one for generation. vLLM must be installed (`pip install vllm`).
        vllm_device (`str`, *optional*, defaults to `"auto"`):
            Device where vLLM generation will run, e.g. `"cuda:1"`. If set to `"auto"` (default), the system will
            automatically select the next available GPU after the last one used for training. This assumes that
            training has not already occupied all available GPUs. If only one device is available, the device will be
            shared between both training and vLLM.
        vllm_gpu_memory_utilization (`float`, *optional*, defaults to `0.9`):
            Ratio (between 0 and 1) of GPU memory to reserve for the model weights, activations, and KV cache on the
            device dedicated to generation powered by vLLM. Higher values will increase the KV cache size and thus
            improve the model's throughput. However, if the value is too high, it may cause out-of-memory (OOM) errors
            during initialization.
        vllm_dtype (`str`, *optional*, defaults to `"auto"`):
            Data type to use for vLLM generation. If set to `"auto"`, the data type will be automatically determined
            based on the model configuration. Find the supported values in the vLLM documentation.
        vllm_max_model_len (`int` or `None`, *optional*, defaults to `None`):
            If set, the `max_model_len` to use for vLLM. This could be useful when running with reduced
            `vllm_gpu_memory_utilization`, leading to a reduced KV cache size. If not set, vLLM will use the model
            context size, which might be much larger than the KV cache, leading to inefficiencies.

        > Parameters that control the training

        learning_rate (`float`, *optional*, defaults to `1e-6`):
            Initial learning rate for [`AdamW`] optimizer. The default value replaces that of
            [`~transformers.TrainingArguments`].
        beta (`float`, *optional*, defaults to `0.04`):
            KL coefficient.
        reward_weights (`list[float]` or `None`, *optional*, defaults to `None`):
            Weights for each reward function. Must match the number of reward functions. If `None`, all rewards are
            weighted equally with weight `1.0`.
        sync_ref_model (`bool`, *optional*, defaults to `False`):
            Whether to synchronize the reference model with the active model every `ref_model_sync_steps` steps, using
            the `ref_model_mixup_alpha` parameter. This synchronization originites from the
            [TR-DPO](https://huggingface.co/papers/2404.09656) paper.
        ref_model_mixup_alpha (`float`, *optional*, defaults to `0.9`):
            α parameter from the [TR-DPO](https://huggingface.co/papers/2404.09656) paper, which controls the mix
            between the current policy and the previous reference policy during updates. The reference policy is
            updated according to the equation: `π_ref = α * π_θ + (1 - α) * π_ref_prev`. To use this parameter, you
            must set `sync_ref_model=True`.
        ref_model_sync_steps (`int`, *optional*, defaults to `64`):
            τ parameter from the [TR-DPO](https://huggingface.co/papers/2404.09656) paper, which determines how
            frequently the current policy is synchronized with the reference policy. To use this parameter, you must
            set `sync_ref_model=True`.

        > Parameters that control the logging

        log_completions (`bool`, *optional*, defaults to `False`):
            Whether to log the completions during training.
    
    """
    vllm_sampling_params: Optional[Any] = field(
        default = None,
        metadata = {'help': 'vLLM SamplingParams'},
    )
    unsloth_num_chunks : Optional[int] = field(
        default = -1,
        metadata = {'help': 'Chunk size to reduce memory usage. -1 is most efficient.'},
    )
    def __init__(
        self,
        output_dir = None,
        overwrite_output_dir = None,
        do_train = False,
        do_eval = False,
        do_predict = False,
        eval_strategy = 'no',
        prediction_loss_only = False,
        per_device_train_batch_size = 4,
        per_device_eval_batch_size = 4,
        per_gpu_train_batch_size = None,
        per_gpu_eval_batch_size = None,
        gradient_accumulation_steps = 2,
        eval_accumulation_steps = 2,
        eval_delay = 0,
        torch_empty_cache_steps = 250,
        learning_rate = 5e-05,
        weight_decay = 0.01,
        adam_beta1 = 0.9,
        adam_beta2 = 0.999,
        adam_epsilon = 1e-08,
        max_grad_norm = 1.0,
        num_train_epochs = 3.0,
        max_steps = -1,
        lr_scheduler_type = 'linear',
        warmup_ratio = 0.1,
        warmup_steps = 0,
        log_level = 'passive',
        log_level_replica = 'warning',
        log_on_each_node = True,
        logging_dir = None,
        logging_strategy = 'steps',
        logging_first_step = False,
        logging_steps = 1,
        logging_nan_inf_filter = False,
        save_strategy = 'steps',
        save_steps = 500,
        save_total_limit = None,
        save_safetensors = True,
        save_on_each_node = False,
        save_only_model = False,
        restore_callback_states_from_checkpoint = False,
        no_cuda = False,
        use_cpu = False,
        use_mps_device = False,
        seed = 3407,
        data_seed = 3407,
        jit_mode_eval = False,
        use_ipex = False,
        bf16 = False,
        fp16 = False,
        fp16_opt_level = 'O1',
        half_precision_backend = 'auto',
        bf16_full_eval = False,
        fp16_full_eval = False,
        tf32 = None,
        local_rank = -1,
        ddp_backend = None,
        tpu_num_cores = None,
        tpu_metrics_debug = False,
        debug = '',
        dataloader_drop_last = False,
        eval_steps = None,
        dataloader_num_workers = 0,
        dataloader_prefetch_factor = None,
        past_index = -1,
        run_name = None,
        disable_tqdm = None,
        remove_unused_columns = False,
        label_names = None,
        load_best_model_at_end = False,
        metric_for_best_model = None,
        greater_is_better = None,
        ignore_data_skip = False,
        fsdp = '',
        fsdp_min_num_params = 0,
        fsdp_config = None,
        fsdp_transformer_layer_cls_to_wrap = None,
        accelerator_config = None,
        deepspeed = None,
        label_smoothing_factor = 0.0,
        optim = 'adamw_8bit',
        optim_args = None,
        adafactor = False,
        group_by_length = False,
        length_column_name = 'length',
        report_to = None,
        ddp_find_unused_parameters = None,
        ddp_bucket_cap_mb = None,
        ddp_broadcast_buffers = None,
        dataloader_pin_memory = True,
        dataloader_persistent_workers = False,
        skip_memory_metrics = True,
        use_legacy_prediction_loop = False,
        push_to_hub = False,
        resume_from_checkpoint = None,
        hub_model_id = None,
        hub_strategy = 'every_save',
        hub_token = None,
        hub_private_repo = None,
        hub_always_push = False,
        gradient_checkpointing = False,
        gradient_checkpointing_kwargs = None,
        include_inputs_for_metrics = False,
        eval_do_concat_batches = True,
        fp16_backend = 'auto',
        evaluation_strategy = None,
        push_to_hub_model_id = None,
        push_to_hub_organization = None,
        push_to_hub_token = None,
        mp_parameters = '',
        auto_find_batch_size = False,
        full_determinism = False,
        torchdynamo = None,
        ray_scope = 'last',
        ddp_timeout = 1800,
        torch_compile = False,
        torch_compile_backend = None,
        torch_compile_mode = None,
        dispatch_batches = None,
        split_batches = None,
        include_tokens_per_second = False,
        include_num_input_tokens_seen = False,
        neftune_noise_alpha = None,
        optim_target_modules = None,
        batch_eval_metrics = False,
        eval_on_start = False,
        use_liger_kernel = False,
        eval_use_gather_object = False,
        average_tokens_across_devices = False,
        model_init_kwargs = None,
        max_prompt_length = 512,
        num_generations = 8,
        temperature = 0.9,
        max_completion_length = 256,
        ds3_gather_for_generation = True,
        use_vllm = False,
        vllm_device = 'auto',
        vllm_gpu_memory_utilization = 0.9,
        vllm_dtype = 'auto',
        vllm_max_model_len = None,
        beta = 0.04,
        reward_weights = None,
        sync_ref_model = False,
        ref_model_mixup_alpha = 0.9,
        ref_model_sync_steps = 64,
        log_completions = False,
        vllm_sampling_params = None,
        unsloth_num_chunks = -1,
        **kwargs,
    ):
        if learning_rate < 1e-7: raise FloatingPointError(f'Unsloth: Your learning rate of `{learning_rate}` is too small and less than 1e-7! Consider increasing it, otherwise gradient updates will be close to 0!')
        if learning_rate > 1: raise OverflowError(f'Unsloth: Your learning rate of `{learning_rate}` is way too larger > 1! Consider decreasing it to 1e-1, otherwise gradient updates will explode!')
        if output_dir is None and save_strategy == 'steps' and save_steps == 500:
            output_dir = 'unsloth_training_checkpoints'
            save_strategy = 'no'
        div = per_device_train_batch_size // num_generations
        if div * num_generations != per_device_train_batch_size:
            print('Unsloth: We now expect `per_device_train_batch_size` to be a multiple of `num_generations`.\nWe will change the batch size of ' + str(per_device_train_batch_size) + ' to the `num_generations` of ' + str(num_generations))
            per_device_train_batch_size = num_generations
        
        super().__init__(
            output_dir = output_dir,
            overwrite_output_dir = overwrite_output_dir,
            do_train = do_train,
            do_eval = do_eval,
            do_predict = do_predict,
            eval_strategy = eval_strategy,
            prediction_loss_only = prediction_loss_only,
            per_device_train_batch_size = per_device_train_batch_size,
            per_device_eval_batch_size = per_device_eval_batch_size,
            per_gpu_train_batch_size = per_gpu_train_batch_size,
            per_gpu_eval_batch_size = per_gpu_eval_batch_size,
            gradient_accumulation_steps = gradient_accumulation_steps,
            eval_accumulation_steps = eval_accumulation_steps,
            eval_delay = eval_delay,
            torch_empty_cache_steps = torch_empty_cache_steps,
            learning_rate = learning_rate,
            weight_decay = weight_decay,
            adam_beta1 = adam_beta1,
            adam_beta2 = adam_beta2,
            adam_epsilon = adam_epsilon,
            max_grad_norm = max_grad_norm,
            num_train_epochs = num_train_epochs,
            max_steps = max_steps,
            lr_scheduler_type = lr_scheduler_type,
            warmup_ratio = warmup_ratio,
            warmup_steps = warmup_steps,
            log_level = log_level,
            log_level_replica = log_level_replica,
            log_on_each_node = log_on_each_node,
            logging_dir = logging_dir,
            logging_strategy = logging_strategy,
            logging_first_step = logging_first_step,
            logging_steps = logging_steps,
            logging_nan_inf_filter = logging_nan_inf_filter,
            save_strategy = save_strategy,
            save_steps = save_steps,
            save_total_limit = save_total_limit,
            save_safetensors = save_safetensors,
            save_on_each_node = save_on_each_node,
            save_only_model = save_only_model,
            restore_callback_states_from_checkpoint = restore_callback_states_from_checkpoint,
            no_cuda = no_cuda,
            use_cpu = use_cpu,
            use_mps_device = use_mps_device,
            seed = seed,
            data_seed = data_seed,
            jit_mode_eval = jit_mode_eval,
            use_ipex = use_ipex,
            bf16 = bf16,
            fp16 = fp16,
            fp16_opt_level = fp16_opt_level,
            half_precision_backend = half_precision_backend,
            bf16_full_eval = bf16_full_eval,
            fp16_full_eval = fp16_full_eval,
            tf32 = tf32,
            local_rank = local_rank,
            ddp_backend = ddp_backend,
            tpu_num_cores = tpu_num_cores,
            tpu_metrics_debug = tpu_metrics_debug,
            debug = debug,
            dataloader_drop_last = dataloader_drop_last,
            eval_steps = eval_steps,
            dataloader_num_workers = dataloader_num_workers,
            dataloader_prefetch_factor = dataloader_prefetch_factor,
            past_index = past_index,
            run_name = run_name,
            disable_tqdm = disable_tqdm,
            remove_unused_columns = remove_unused_columns,
            label_names = label_names,
            load_best_model_at_end = load_best_model_at_end,
            metric_for_best_model = metric_for_best_model,
            greater_is_better = greater_is_better,
            ignore_data_skip = ignore_data_skip,
            fsdp = fsdp,
            fsdp_min_num_params = fsdp_min_num_params,
            fsdp_config = fsdp_config,
            fsdp_transformer_layer_cls_to_wrap = fsdp_transformer_layer_cls_to_wrap,
            accelerator_config = accelerator_config,
            deepspeed = deepspeed,
            label_smoothing_factor = label_smoothing_factor,
            optim = optim,
            optim_args = optim_args,
            adafactor = adafactor,
            group_by_length = group_by_length,
            length_column_name = length_column_name,
            report_to = report_to,
            ddp_find_unused_parameters = ddp_find_unused_parameters,
            ddp_bucket_cap_mb = ddp_bucket_cap_mb,
            ddp_broadcast_buffers = ddp_broadcast_buffers,
            dataloader_pin_memory = dataloader_pin_memory,
            dataloader_persistent_workers = dataloader_persistent_workers,
            skip_memory_metrics = skip_memory_metrics,
            use_legacy_prediction_loop = use_legacy_prediction_loop,
            push_to_hub = push_to_hub,
            resume_from_checkpoint = resume_from_checkpoint,
            hub_model_id = hub_model_id,
            hub_strategy = hub_strategy,
            hub_token = hub_token,
            hub_private_repo = hub_private_repo,
            hub_always_push = hub_always_push,
            gradient_checkpointing = gradient_checkpointing,
            gradient_checkpointing_kwargs = gradient_checkpointing_kwargs,
            include_inputs_for_metrics = include_inputs_for_metrics,
            eval_do_concat_batches = eval_do_concat_batches,
            fp16_backend = fp16_backend,
            evaluation_strategy = evaluation_strategy,
            push_to_hub_model_id = push_to_hub_model_id,
            push_to_hub_organization = push_to_hub_organization,
            push_to_hub_token = push_to_hub_token,
            mp_parameters = mp_parameters,
            auto_find_batch_size = auto_find_batch_size,
            full_determinism = full_determinism,
            torchdynamo = torchdynamo,
            ray_scope = ray_scope,
            ddp_timeout = ddp_timeout,
            torch_compile = torch_compile,
            torch_compile_backend = torch_compile_backend,
            torch_compile_mode = torch_compile_mode,
            dispatch_batches = dispatch_batches,
            split_batches = split_batches,
            include_tokens_per_second = include_tokens_per_second,
            include_num_input_tokens_seen = include_num_input_tokens_seen,
            neftune_noise_alpha = neftune_noise_alpha,
            optim_target_modules = optim_target_modules,
            batch_eval_metrics = batch_eval_metrics,
            eval_on_start = eval_on_start,
            use_liger_kernel = use_liger_kernel,
            eval_use_gather_object = eval_use_gather_object,
            average_tokens_across_devices = average_tokens_across_devices,
            model_init_kwargs = model_init_kwargs,
            max_prompt_length = max_prompt_length,
            num_generations = num_generations,
            temperature = temperature,
            max_completion_length = max_completion_length,
            ds3_gather_for_generation = ds3_gather_for_generation,
            use_vllm = use_vllm,
            vllm_device = vllm_device,
            vllm_gpu_memory_utilization = vllm_gpu_memory_utilization,
            vllm_dtype = vllm_dtype,
            vllm_max_model_len = vllm_max_model_len,
            beta = beta,
            reward_weights = reward_weights,
            sync_ref_model = sync_ref_model,
            ref_model_mixup_alpha = ref_model_mixup_alpha,
            ref_model_sync_steps = ref_model_sync_steps,
            log_completions = log_completions,**kwargs)
        self.vllm_sampling_params = vllm_sampling_params
        self.unsloth_num_chunks = unsloth_num_chunks
pass

class _UnslothGRPOTrainer(Trainer):
    """"""

    _tag_names = ["trl", "grpo"]

    def __init__(
        self,
        model: Union[str, PreTrainedModel],
        reward_funcs: Union[RewardFunc, list[RewardFunc]],
        args: GRPOConfig = None,
        train_dataset: Optional[Union[Dataset, IterableDataset]] = None,
        eval_dataset: Optional[Union[Dataset, IterableDataset, dict[str, Union[Dataset, IterableDataset]]]] = None,
        processing_class: Optional[PreTrainedTokenizerBase] = None,
        reward_processing_classes: Optional[Union[PreTrainedTokenizerBase, list[PreTrainedTokenizerBase]]] = None,
        callbacks: Optional[list[TrainerCallback]] = None,
        optimizers: tuple[Optional[torch.optim.Optimizer], Optional[torch.optim.lr_scheduler.LambdaLR]] = (None, None),
        peft_config: Optional["PeftConfig"] = None,
    ):

        if hasattr(model, 'vllm_engine') and hasattr(args, 'use_vllm') and (getattr(args, 'use_vllm', False) == False): args.use_vllm = True
        # Args
        if args is None:
            model_name = model if isinstance(model, str) else model.config._name_or_path
            model_name = model_name.split("/")[-1]
            args = GRPOConfig(f"{model_name}-GRPO")

        # Models
        # Trained model
        model_init_kwargs = args.model_init_kwargs or {}
        if isinstance(model, str):
            model_id = model
            torch_dtype = model_init_kwargs.get("torch_dtype")
            if isinstance(torch_dtype, torch.dtype) or torch_dtype == "auto" or torch_dtype is None:
                pass  # torch_dtype is already a torch.dtype or "auto" or None
            elif isinstance(torch_dtype, str):  # it's a str, but not "auto"
                torch_dtype = getattr(torch, torch_dtype)
                model_init_kwargs["torch_dtype"] = torch_dtype
            else:
                raise ValueError(
                    "Invalid `torch_dtype` passed to `GRPOConfig`. Expected either 'auto' or a string representing "
                    f"a `torch.dtype` (e.g., 'float32'), but got {torch_dtype}."
                )
            # Disable caching if gradient checkpointing is enabled (not supported)
            model_init_kwargs["use_cache"] = (
                False if args.gradient_checkpointing else model_init_kwargs.get("use_cache")
            )
            model = AutoModelForCausalLM.from_pretrained(model, **model_init_kwargs)
        else:
            model_id = model.config._name_or_path
            if args.model_init_kwargs is not None:
                raise ValueError(
                    "You passed `model_init_kwargs` to the `GRPOConfig`, but your model is already instantiated. "
                    "This argument can only be used when the `model` argument is a string."
                )

        if False:
            model = model

        # Reference model
        if is_deepspeed_zero3_enabled():
            self.ref_model = AutoModelForCausalLM.from_pretrained(model_id, **model_init_kwargs)
        elif not is_peft_model(model):
            # If PEFT configuration is not provided, create a reference model based on the initial model.
            self.ref_model = create_reference_model(model)
        else:
            # If PEFT is used, the reference model is not needed since the adapter can be disabled
            # to revert to the initial model.
            self.ref_model = None

        # Processing class
        if processing_class is None:
            processing_class = AutoTokenizer.from_pretrained(model.config._name_or_path, padding_side="left")

        # Reward functions
        if not isinstance(reward_funcs, list):
            reward_funcs = [reward_funcs]
        for i, reward_func in enumerate(reward_funcs):
            if isinstance(reward_func, str):
                reward_funcs[i] = AutoModelForSequenceClassification.from_pretrained(
                    reward_func, num_labels=1, **model_init_kwargs
                )
        self.reward_funcs = reward_funcs

        # Reward weights
        if args.reward_weights is not None:
            if len(args.reward_weights) != len(reward_funcs):
                raise ValueError(
                    f"Number of reward weights ({len(args.reward_weights)}) must match number of reward "
                    f"functions ({len(reward_funcs)})"
                )
            self.reward_weights = torch.tensor(args.reward_weights, dtype=torch.float32)
        else:
            self.reward_weights = torch.ones(len(reward_funcs), dtype=torch.float32)

        # Reward processing class
        if reward_processing_classes is None:
            reward_processing_classes = [None] * len(reward_funcs)
        elif not isinstance(reward_processing_classes, list):
            reward_processing_classes = [reward_processing_classes]
        else:
            if len(reward_processing_classes) != len(reward_funcs):
                raise ValueError("The number of reward processing classes must match the number of reward functions.")

        for i, (reward_processing_class, reward_func) in enumerate(zip(reward_processing_classes, reward_funcs)):
            if isinstance(reward_func, PreTrainedModel):
                if reward_processing_class is None:
                    reward_processing_class = AutoTokenizer.from_pretrained(reward_func.config._name_or_path)
                if reward_processing_class.pad_token_id is None:
                    reward_processing_class.pad_token = reward_processing_class.eos_token
                # The reward model computes the reward for the latest non-padded token in the input sequence.
                # So it's important to set the pad token ID to the padding token ID of the processing class.
                reward_func.config.pad_token_id = reward_processing_class.pad_token_id
                reward_processing_classes[i] = reward_processing_class
        self.reward_processing_classes = reward_processing_classes

        # Data collator
        def data_collator(features):  # No data collation is needed in GRPO
            return features

        # Training arguments
        self.max_prompt_length = args.max_prompt_length
        self.max_completion_length = args.max_completion_length  # = |o_i| in the GRPO paper
        self.num_generations = args.num_generations  # = G in the GRPO paper
        self.use_vllm = args.use_vllm

        self.beta = args.beta

        # The trainer estimates the number of FLOPs (floating-point operations) using the number of elements in the
        # input tensor associated with the key "input_ids". However, in GRPO, the sampled data does not include the
        # "input_ids" key. Instead, the available keys is "prompt". As a result, the trainer issues the warning:
        # "Could not estimate the number of tokens of the input, floating-point operations will not be computed." To
        # suppress this warning, we set the "estimate_tokens" key in the model's "warnings_issued" dictionary to True.
        # This acts as a flag to indicate that the warning has already been issued.
        model.warnings_issued["estimate_tokens"] = True

        # Initialize the metrics
        self._metrics = defaultdict(list)
        self.log_completions = args.log_completions

        super().__init__(
            model=model,
            args=args,
            data_collator=data_collator,
            train_dataset=train_dataset,
            eval_dataset=eval_dataset,
            processing_class=processing_class,
            callbacks=callbacks,
            optimizers=optimizers,
        )

        # Check if the per_device_train/eval_batch_size * num processes can be divided by the number of generations
        num_processes = self.accelerator.num_processes
        global_batch_size = args.per_device_train_batch_size * num_processes
        possible_values = [n_gen for n_gen in range(2, global_batch_size + 1) if (global_batch_size) % n_gen == 0]
        if self.num_generations not in possible_values:
            raise ValueError(
                f"The global train batch size ({num_processes} x {args.per_device_train_batch_size}) must be evenly "
                f"divisible by the number of generations per prompt ({self.num_generations}). Given the current train "
                f"batch size, the valid values for the number of generations are: {possible_values}."
            )
        if self.args.eval_strategy != "no":
            global_batch_size = args.per_device_eval_batch_size * num_processes
            possible_values = [n_gen for n_gen in range(2, global_batch_size + 1) if (global_batch_size) % n_gen == 0]
            if self.num_generations not in possible_values:
                raise ValueError(
                    f"The global eval batch size ({num_processes} x {args.per_device_eval_batch_size}) must be evenly "
                    f"divisible by the number of generations per prompt ({self.num_generations}). Given the current "
                    f"eval batch size, the valid values for the number of generations are: {possible_values}."
                )

        # Ensure each process receives a unique seed to prevent duplicate completions when generating with
        # transformers if num_generations exceeds per_device_train_batch_size. We could skip it if we use vLLM, but
        # it's safer to set it in all cases.
        set_seed(args.seed, device_specific=True)

        if self.use_vllm:
            self.llm = model.vllm_engine; self._last_loaded_step = 0; self.sampling_params = SamplingParams(
                    temperature=args.temperature,
                    max_tokens=self.max_completion_length,**getattr(getattr(args, 'vllm_sampling_params', vLLMSamplingParams()), '_set_kwargs', {}),)
        else:
            self.generation_config = GenerationConfig(
                max_new_tokens=self.max_completion_length,
                do_sample=True,
                temperature=args.temperature,
                pad_token_id=processing_class.pad_token_id,
            )

        # Gradient accumulation requires scaled loss. Normally, loss scaling in the parent class depends on whether the
        # model accepts loss-related kwargs. Since we compute our own loss, this check is irrelevant. We set
        # self.model_accepts_loss_kwargs to False to enable scaling.
        self.model_accepts_loss_kwargs = False

        # Add tags to the model
        self.model.add_model_tags(self._tag_names)

        if self.ref_model is not None:
            if self.is_deepspeed_enabled:
                self.ref_model = prepare_deepspeed(self.ref_model, self.accelerator)
            else:
                self.ref_model = self.accelerator.prepare_model(self.ref_model, evaluation_mode=True)

        if args.sync_ref_model:
            self.add_callback(SyncRefModelCallback(ref_model=self.ref_model, accelerator=self.accelerator))

        for i, reward_func in enumerate(self.reward_funcs):
            if isinstance(reward_func, PreTrainedModel):
                self.reward_funcs[i] = self.accelerator.prepare_model(reward_func, evaluation_mode=True)

    def _set_signature_columns_if_needed(self):
        # If `self.args.remove_unused_columns` is True, non-signature columns are removed.
        # By default, this method sets `self._signature_columns` to the model's expected inputs.
        # In GRPOTrainer, we preprocess data, so using the model's signature columns doesn't work.
        # Instead, we set them to the columns expected by the `training_step` method, hence the override.
        if self._signature_columns is None:
            self._signature_columns = ["prompt"]

    def _get_train_sampler(self) -> Sampler:
        # Returns a sampler that ensures each prompt is repeated across multiple processes. This guarantees that
        # identical prompts are distributed to different GPUs, allowing rewards to be computed and normalized correctly
        # within each prompt group. Using the same seed across processes ensures consistent prompt assignment,
        # preventing discrepancies in group formation.
        return RepeatRandomSampler(self.train_dataset, self.num_generations, seed=self.args.seed)

    def _get_eval_sampler(self, eval_dataset) -> Sampler:
        # Returns a sampler that ensures each prompt is repeated across multiple processes. This guarantees that
        # identical prompts are distributed to different GPUs, allowing rewards to be computed and normalized correctly
        # within each prompt group. Using the same seed across processes ensures consistent prompt assignment,
        # preventing discrepancies in group formation.
        return RepeatRandomSampler(eval_dataset, self.num_generations, seed=self.args.seed)

    # Get the per-token log probabilities for the completions for the model and the reference model
    def _get_per_token_logps(self, model, input_ids, attention_mask, logits_to_keep):
        if os.environ.get('UNSLOTH_USE_NEW_MODEL', '0') == '0':
            return None # Unsloth efficient GRPO
        # Otherwise, calculate normally:
        if not hasattr(self, '_autocast_dtype'):
            self._autocast_dtype = torch.float16 if os.environ.get('ACCELERATE_MIXED_PRECISION', 'fp16') == 'fp16' else torch.bfloat16
            if os.environ.get('UNSLOTH_FORCE_FLOAT32', '0') == '1': self._autocast_dtype = torch.float32
        with torch.amp.autocast(device_type = 'cuda', dtype = self._autocast_dtype):
            # We add 1 to `logits_to_keep` because the last logits of the sequence is later excluded
            logits = model(input_ids=input_ids, attention_mask=attention_mask, logits_to_keep=logits_to_keep + 1).logits
            logits = logits[:, :-1, :]  # (B, L-1, V), exclude the last logit: it corresponds to the next token pred

            input_ids = input_ids[:, -logits_to_keep:]
            # For transformers<=4.48, logits_to_keep argument isn't supported, so here we drop logits ourselves.
            # See https://github.com/huggingface/trl/issues/2770
            logits = logits[:, -logits_to_keep:]
            return logits
            # return selective_log_softmax(logits, input_ids)  #  compute logprobs for the input tokens
        pass

    def _move_model_to_vllm(self, *args, **kwargs): return None

    def _prepare_inputs(self, inputs: dict[str, Union[torch.Tensor, Any]]) -> dict[str, Union[torch.Tensor, Any]]:
        device = self.accelerator.device
        prompts = [x["prompt"] for x in inputs]
        prompts_text = [maybe_apply_chat_template(example, self.processing_class)["prompt"] for example in inputs]
        prompt_inputs = self.processing_class(
            prompts_text, return_tensors="pt", padding=True, padding_side="left", add_special_tokens=False
        )
        prompt_inputs = super()._prepare_inputs(prompt_inputs)
        prompt_ids, prompt_mask = prompt_inputs["input_ids"], prompt_inputs["attention_mask"]

        if self.max_prompt_length is not None:
            prompt_ids = prompt_ids[:, -self.max_prompt_length :]
            prompt_mask = prompt_mask[:, -self.max_prompt_length :]

        # Generate completions using either vLLM or regular generation
        if self.args.use_vllm:
            # First, have main process load weights if needed
            if self.state.global_step != self._last_loaded_step:
                self._move_model_to_vllm()
                self._last_loaded_step = self.state.global_step

            # Generate completions using vLLM: gather all prompts and use them in a single call in the main process
            all_prompts_text = gather_object(prompts_text)
            if self.accelerator.is_main_process:
                outputs = self.llm.generate(all_prompts_text, sampling_params=self.sampling_params, use_tqdm=False, lora_request = self.model.load_lora('grpo_trainer_lora_model', load_tensors = True))
                completion_ids = [out.token_ids for completions in outputs for out in completions.outputs]
            else:
                completion_ids = [None] * len(all_prompts_text)
            # Broadcast the completions from the main process to all processes, ensuring each process receives its
            # corresponding slice.
            completion_ids = broadcast_object_list(completion_ids, from_process=0)
            process_slice = slice(
                self.accelerator.process_index * len(prompts),
                (self.accelerator.process_index + 1) * len(prompts),
            )
            completion_ids = completion_ids[process_slice]

            # Pad the completions, and concatenate them with the prompts
            completion_ids = [torch.tensor(ids, device=device) for ids in completion_ids]
            completion_ids = pad(completion_ids, padding_value=self.processing_class.pad_token_id)
            prompt_completion_ids = torch.cat([prompt_ids, completion_ids], dim=1)
        else:
            # Regular generation path
            with unwrap_model_for_generation(self.model, self.accelerator) as unwrapped_model:
                prompt_completion_ids = unwrapped_model.generate(
                    prompt_ids, attention_mask=prompt_mask, generation_config=self.generation_config
                )

            # Compute prompt length and extract completion ids
            prompt_length = prompt_ids.size(1)
            prompt_ids = prompt_completion_ids[:, :prompt_length]
            completion_ids = prompt_completion_ids[:, prompt_length:]

        # Mask everything after the first EOS token
        is_eos = completion_ids == self.processing_class.eos_token_id
        eos_idx = torch.full((is_eos.size(0),), is_eos.size(1), dtype=torch.long, device=device)
        eos_idx[is_eos.any(dim=1)] = is_eos.int().argmax(dim=1)[is_eos.any(dim=1)]
        sequence_indices = torch.arange(is_eos.size(1), device=device).expand(is_eos.size(0), -1)
        completion_mask = (sequence_indices <= eos_idx.unsqueeze(1)).int()

        # Concatenate prompt_mask with completion_mask for logit computation
        attention_mask = torch.cat([prompt_mask, completion_mask], dim=1)  # (B*G, P+C)

        logits_to_keep = completion_ids.size(1)  # we only need to compute the logits for the completion tokens

        with torch.inference_mode(), torch.amp.autocast(device_type = 'cuda', dtype = torch.float16 if os.environ.get('ACCELERATE_MIXED_PRECISION', 'fp16') == 'fp16' else torch.bfloat16) if not torch.is_autocast_enabled('cuda') else nullcontext():
            if self.ref_model is not None:
                ref_per_token_logps = self._get_per_token_logps(
                    self.ref_model, prompt_completion_ids, attention_mask, logits_to_keep
                )
            else:
                with self.accelerator.unwrap_model(self.model, keep_fp32_wrapper = False).disable_adapter():
                    ref_per_token_logps = self._get_per_token_logps(
                        self.model, prompt_completion_ids, attention_mask, logits_to_keep
                    )

        # Decode the generated completions
        completions_text = self.processing_class.batch_decode(completion_ids, skip_special_tokens=True)
        if is_conversational(inputs[0]):
            completions = []
            for prompt, completion in zip(prompts, completions_text):
                bootstrap = prompt.pop()["content"] if prompt[-1]["role"] == "assistant" else ""
                completions.append([{"role": "assistant", "content": bootstrap + completion}])
        else:
            completions = completions_text

        rewards_per_func = torch.zeros(len(prompts), len(self.reward_funcs), device=device)
        for i, (reward_func, reward_processing_class) in enumerate(
            zip(self.reward_funcs, self.reward_processing_classes)
        ):
            if isinstance(reward_func, nn.Module):  # Module instead of PretrainedModel for compat with compiled models
                if is_conversational(inputs[0]):
                    messages = [{"messages": p + c} for p, c in zip(prompts, completions)]
                    texts = [apply_chat_template(x, reward_processing_class)["text"] for x in messages]
                else:
                    texts = [p + c for p, c in zip(prompts, completions)]
                reward_inputs = reward_processing_class(
                    texts, return_tensors="pt", padding=True, padding_side="right", add_special_tokens=False
                )
                reward_inputs = super()._prepare_inputs(reward_inputs)
                with torch.inference_mode(), torch.amp.autocast(device_type = 'cuda', dtype = torch.float16 if os.environ.get('ACCELERATE_MIXED_PRECISION', 'fp16') == 'fp16' else torch.bfloat16) if not torch.is_autocast_enabled('cuda') else nullcontext():
                    rewards_per_func[:, i] = reward_func(**reward_inputs).logits[:, 0]  # Shape (B*G,)
            else:
                # Repeat all input columns (but "prompt" and "completion") to match the number of generations
                keys = [key for key in inputs[0] if key not in ["prompt", "completion"]]
                reward_kwargs = {key: [example[key] for example in inputs] for key in keys}
                output_reward_func = reward_func(prompts=prompts, completions=completions, **reward_kwargs)
                rewards_per_func[:, i] = torch.tensor(output_reward_func, dtype=torch.float32, device=device)

        # Gather the reward per function: this part is crucial, because the rewards are normalized per group and the
        # completions may be distributed across processes
        rewards_per_func = gather(rewards_per_func)

        # Apply weights to each reward function's output and sum
        rewards = (rewards_per_func * self.reward_weights.to(device).unsqueeze(0)).sum(dim=1)

        # Compute grouped-wise rewards
        mean_grouped_rewards = rewards.view(-1, self.num_generations).mean(dim=1)
        std_grouped_rewards = rewards.view(-1, self.num_generations).std(dim=1)

        # Normalize the rewards to compute the advantages
        mean_grouped_rewards = mean_grouped_rewards.repeat_interleave(self.num_generations, dim=0)
        std_grouped_rewards = std_grouped_rewards.repeat_interleave(self.num_generations, dim=0)
        advantages = (rewards - mean_grouped_rewards) / (std_grouped_rewards + 1e-4)

        # Slice to keep only the local part of the data
        process_slice = slice(
            self.accelerator.process_index * len(prompts),
            (self.accelerator.process_index + 1) * len(prompts),
        )
        advantages = advantages[process_slice]

        # Log the metrics
        reward_per_func = rewards_per_func.mean(0)
        for i, reward_func in enumerate(self.reward_funcs):
            if isinstance(reward_func, nn.Module):  # Module instead of PretrainedModel for compat with compiled models
                reward_func_name = reward_func.config._name_or_path.split("/")[-1]
            else:
                reward_func_name = reward_func.__name__
            self._metrics[f"rewards/{reward_func_name}"].append(reward_per_func[i].item())

        self._metrics["reward"].append(rewards.mean().item())
        self._metrics["reward_std"].append(std_grouped_rewards.mean().item())

        if (
            self.log_completions
            and self.state.global_step % self.args.logging_steps == 0
            and "wandb" in self.args.report_to
        ):
            import pandas as pd

            # For logging
            table = {
                "step": [str(self.state.global_step)] * len(rewards),
                "prompt": gather_object(prompts_text),
                "completion": gather_object(completions_text),
                "reward": rewards.tolist(),
            }
            df = pd.DataFrame(table)

            if wandb.run is not None and self.accelerator.is_main_process:
                wandb.log({"completions": wandb.Table(dataframe=df)})

        return {
            "prompt_ids": prompt_ids,
            "prompt_mask": prompt_mask,
            "completion_ids": completion_ids,
            "completion_mask": completion_mask,
            "ref_per_token_logps": ref_per_token_logps,
            "advantages": advantages,
        }

    def compute_loss(self, model, inputs, return_outputs = False, num_items_in_batch = None):
        if return_outputs:
            raise ValueError("The GRPOTrainer does not support returning outputs")
        # Compute the per-token log probabilities for the model

        prompt_ids, prompt_mask = inputs["prompt_ids"], inputs["prompt_mask"]
        completion_ids, completion_mask = inputs["completion_ids"], inputs["completion_mask"]
        input_ids = torch.cat([prompt_ids, completion_ids], dim=1)
        bsz, qlen = input_ids.shape
        # attention_mask = torch.cat([prompt_mask, completion_mask], dim=1)
        attention_mask = None
        logits_to_keep = completion_ids.size(1)  # we only need to compute the logits for the completion tokens
        _input_ids = input_ids
        _logits_to_keep = logits_to_keep
        per_token_logps = self._get_per_token_logps(model, input_ids, attention_mask, logits_to_keep)

        # Compute the KL divergence between the model and the reference model
        ref_per_token_logps = inputs["ref_per_token_logps"]
        # per_token_kl = torch.exp(ref_per_token_logps - per_token_logps) - (ref_per_token_logps - per_token_logps) - 1

        # x - x.detach() allows for preserving gradients from x
        advantages = inputs["advantages"]
        # per_token_loss = torch.exp(per_token_logps - per_token_logps.detach()) * advantages.unsqueeze(1)
        # per_token_loss = -(per_token_loss - self.beta * per_token_kl)
        # loss = ((per_token_loss * completion_mask).sum(dim=1) / completion_mask.sum(dim=1)).mean()
        input_ids = input_ids[:, -logits_to_keep:]
        if per_token_logps is not None:
            loss, completion_length, mean_kl = grpo_compute_loss_slow(
                ref_per_token_logps, per_token_logps, input_ids, completion_mask, self.beta, advantages,
            )
        else:
            loss, completion_length, mean_kl = grpo_accumulated_loss(
                self, _input_ids, logits_to_keep, completion_mask, advantages,
                n_chunks = self.args.unsloth_num_chunks,
            )

        # Log the metrics
        # completion_length = self.accelerator.gather_for_metrics(completion_mask.sum(1)).float().mean().item()

        # mean_kl = ((per_token_kl * completion_mask).sum(dim=1) / completion_mask.sum(dim=1)).mean()
        # self._metrics["kl"].append(self.accelerator.gather_for_metrics(mean_kl).mean().item())

        if "train" in self._metrics:
            mode = "eval" if self.control.should_evaluate else "train"
            self._metrics[mode]["completion_length"].append(completion_length.item())
            self._metrics[mode]["kl"].append(mean_kl.item())
        else:
            self._metrics["completion_length"].append(completion_length.item())
            self._metrics["kl"].append(mean_kl.item())
        return loss

    def prediction_step(self, model, inputs, prediction_loss_only, ignore_keys: Optional[list[str]] = None):
        inputs = self._prepare_inputs(inputs)
        with torch.no_grad():
            with self.compute_loss_context_manager():
                loss = self.compute_loss(model, inputs)
            loss = loss.mean().detach()
        return loss, None, None

    def log(self, logs: dict[str, float], start_time: Optional[float] = None) -> None:
        metrics = {key: sum(val) / len(val) for key, val in self._metrics.items()}  # average the metrics

        # This method can be called both in training and evaluation. When called in evaluation, the keys in `logs`
        # start with "eval_". We need to add the prefix "eval_" to the keys in `metrics` to match the format.
        if next(iter(logs.keys())).startswith("eval_"):
            metrics = {f"eval_{key}": val for key, val in metrics.items()}

        logs = {**logs, **metrics}
        if version.parse(transformers.__version__) >= version.parse("4.47.0.dev0"):
            super().log(logs, start_time)
        else:  # transformers<=4.46
            super().log(logs)
        self._metrics.clear()

    def create_model_card(
        self,
        model_name: Optional[str] = None,
        dataset_name: Optional[str] = None,
        tags: Union[str, list[str], None] = None,
    ):
        """
        Creates a draft of a model card using the information available to the `Trainer`.

        Args:
            model_name (`str` or `None`, *optional*, defaults to `None`):
                Name of the model.
            dataset_name (`str` or `None`, *optional*, defaults to `None`):
                Name of the dataset used for training.
            tags (`str`, `list[str]` or `None`, *optional*, defaults to `None`):
                Tags to be associated with the model card.
        """
        if not self.is_world_process_zero():
            return

        if hasattr(self.model.config, "_name_or_path") and not os.path.isdir(self.model.config._name_or_path):
            base_model = self.model.config._name_or_path
        else:
            base_model = None

        tags = tags or []
        if isinstance(tags, str):
            tags = [tags]

        if hasattr(self.model.config, "unsloth_version"):
            tags.append("unsloth")

        citation = textwrap.dedent(
            """\
            @article{zhihong2024deepseekmath,
                title        = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
                author       = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
                year         = 2024,
                eprint       = {arXiv:2402.03300},
            }
            """
        )

        model_card = generate_model_card(
            base_model=base_model,
            model_name=model_name,
            hub_model_id=self.hub_model_id,
            dataset_name=dataset_name,
            tags=tags,
            wandb_url=wandb.run.get_url() if is_wandb_available() and wandb.run is not None else None,
            comet_url=get_comet_experiment_url(),
            trainer_name="GRPO",
            trainer_citation=citation,
            paper_title="DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models",
            paper_id="2402.03300",
        )

        model_card.save(os.path.join(self.args.output_dir, "README.md"))
class UnslothGRPOTrainer(_UnslothGRPOTrainer):
    """
    
    Trainer for the Group Relative Policy Optimization (GRPO) method. This algorithm was initially proposed in the
    paper [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).

    Example:

    ```python
    from datasets import load_dataset
    from trl import GRPOTrainer

    dataset = load_dataset("trl-lib/tldr", split="train")

    def reward_func(completions, **kwargs):
        # Dummy reward function that rewards completions with more unique letters.
        return [float(len(set(completion))) for completion in completions]

    trainer = GRPOTrainer(
        model="Qwen/Qwen2-0.5B-Instruct",
        reward_funcs=reward_func,
        train_dataset=dataset,
    )

    trainer.train()
    ```

    Args:
        model (`Union[str, PreTrainedModel]`):
            Model to be trained. Can be either:

            - A string, being the *model id* of a pretrained model hosted inside a model repo on huggingface.co, or
              a path to a *directory* containing model weights saved using
              [`~transformers.PreTrainedModel.save_pretrained`], e.g., `'./my_model_directory/'`. The model is
              loaded using [`~transformers.AutoModelForCausalLM.from_pretrained`] with the keywork arguments
              in `args.model_init_kwargs`.
            - A [`~transformers.PreTrainedModel`] object. Only causal language models are supported.
        reward_funcs (`Union[RewardFunc, list[RewardFunc]]`):
            Reward functions to be used for computing the rewards. To compute the rewards, we call all the reward
            functions with the prompts and completions and sum the rewards. Can be either:

            - A single reward function, such as:
                - A string: The *model ID* of a pretrained model hosted inside a model repo on huggingface.co, or a
                path to a *directory* containing model weights saved using
                [`~transformers.PreTrainedModel.save_pretrained`], e.g., `'./my_model_directory/'`. The model is loaded
                using [`~transformers.AutoModelForSequenceClassification.from_pretrained`] with `num_labels=1` and the
                keyword arguments in `args.model_init_kwargs`.
                - A [`~transformers.PreTrainedModel`] object: Only sequence classification models are supported.
                - A custom reward function: The function is provided with the prompts and the generated completions,
                  plus any additional columns in the dataset. It should return a list of rewards. For more details, see
                  [Using a custom reward function](#using-a-custom-reward-function).
            - A list of reward functions, where each item can independently be any of the above types. Mixing different
            types within the list (e.g., a string model ID and a custom reward function) is allowed.
        args ([`GRPOConfig`], *optional*, defaults to `None`):
            Configuration for this trainer. If `None`, a default configuration is used.
        train_dataset ([`~datasets.Dataset`] or [`~datasets.IterableDataset`]):
            Dataset to use for training. It must include a column `"prompt"`. Any additional columns in the dataset is
            ignored. The format of the samples can be either:

            - [Standard](dataset_formats#standard): Each sample contains plain text.
            - [Conversational](dataset_formats#conversational): Each sample contains structured messages (e.g., role
              and content).
        eval_dataset ([`~datasets.Dataset`], [`~datasets.IterableDataset`] or `dict[str, Union[Dataset, IterableDataset]]`):
            Dataset to use for evaluation. It must meet the same requirements as `train_dataset`.
        processing_class ([`~transformers.PreTrainedTokenizerBase`], *optional*, defaults to `None`):
            Processing class used to process the data. The padding side must be set to "left". If `None`, the
            processing class is loaded from the model's name with [`~transformers.AutoTokenizer.from_pretrained`].
        reward_processing_classes (`Union[PreTrainedTokenizerBase, list[PreTrainedTokenizerBase]]`, *optional*, defaults to `None`):
            Processing classes corresponding to the reward functions specified in `reward_funcs`. Can be either:

            - A single processing class: Used when `reward_funcs` contains only one reward function.
            - A list of processing classes: Must match the order and length of the reward functions in `reward_funcs`.
            If set to `None`, or if an element of the list corresponding to a [`~transformers.PreTrainedModel`] is
            `None`, the tokenizer for the model is automatically loaded using [`~transformers.AutoTokenizer.from_pretrained`].
            For elements in `reward_funcs` that are custom reward functions (not [`~transformers.PreTrainedModel`]),
            the corresponding entries in `reward_processing_classes` are ignored.
        callbacks (list of [`~transformers.TrainerCallback`], *optional*, defaults to `None`):
            List of callbacks to customize the training loop. Will add those to the list of default callbacks
            detailed in [here](https://huggingface.co/docs/transformers/main_classes/callback).

            If you want to remove one of the default callbacks used, use the [`~transformers.Trainer.remove_callback`]
            method.
        optimizers (`tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR]`, *optional*, defaults to `(None, None)`):
            A tuple containing the optimizer and the scheduler to use. Will default to an instance of [`AdamW`] on your
            model and a scheduler given by [`get_linear_schedule_with_warmup`] controlled by `args`.
        peft_config ([`~peft.PeftConfig`], *optional*, defaults to `None`):
            PEFT configuration used to wrap the model. If `None`, the model is not wrapped.
    
    """
    def __init__(
        self,
        model,
        reward_funcs,
        args = None,
        train_dataset = None,
        eval_dataset = None,
        processing_class = None,
        reward_processing_classes = None,
        callbacks = None,
        peft_config = None,
        **kwargs
    ):
        if args is None: args = UnslothGRPOConfig()
        use_bf16 = getattr(args, 'bf16', False)
        use_fp16 = getattr(args, 'fp16', False)
        force_float32 = False
        if os.environ.get('UNSLOTH_FORCE_FLOAT32', '0') == '1':
            print('Unsloth: Switching to float32 training since model cannot work with float16')
            force_float32 = True
        mixed_precision_dtype = os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32')
        dtype = getattr(model.config, 'torch_dtype', None)
        if dtype is None: dtype = model.get_input_embeddings().dtype
        from unsloth_zoo.utils import _get_dtype
        dtype = _get_dtype(dtype)
        float16 = dtype == torch.float16
        if not force_float32 and (float16 and use_bf16): raise TypeError('Unsloth: Model is in float16 precision but you want to use bfloat16 precision. Set fp16 to `True` and bf16 to `False`')
        if not force_float32 and (not float16 and use_fp16): raise TypeError('Unsloth: Model is in bfloat16 precision but you want to use float16 precision. Set fp16 to `False` and bf16 to `True`')
        if force_float32:
            args.fp16 = False
            args.bf16 = False
            os.environ['ACCELERATE_MIXED_PRECISION'] = 'no'
        elif (not use_bf16 and not use_fp16) and mixed_precision_dtype == 'float32':
            args.fp16 = float16
            args.bf16 = not float16
            os.environ['ACCELERATE_MIXED_PRECISION'] = 'fp16' if float16 else 'bf16'
        if getattr(args, 'eval_dataset', None) is not None and getattr(args, 'eval_strategy', 'no') == 'no':
            args.eval_strategy = 'steps'
            if getattr(args, 'eval_steps', None) is None: args.eval_steps = 0.1
        ga_steps = getattr(args, 'gradient_accumulation_steps', None)
        if ga_steps is not None and ga_steps > 1:
            from transformers import __version__ as transformers_version
            if Version(transformers_version) <= Version('4.45.2'):
                print('**** Unsloth: Please use our fixed gradient_accumulation_steps by updating transformers, TRL and Unsloth!\n'
                      '`pip install --upgrade --no-cache-dir --force-reinstall --no-deps unsloth transformers trl unsloth_zoo`')
        if getattr(args, 'eval_strategy', 'no') != 'no':
            eval_bsz = getattr(args, 'per_device_eval_batch_size', 8)
            if eval_bsz == 8 and args.per_device_train_batch_size < eval_bsz: args.per_device_eval_batch_size = args.per_device_train_batch_size
            if getattr(args, 'eval_accumulation_steps', None) is None and ga_steps is not None: args.eval_accumulation_steps = ga_steps
        fp16_full_eval = getattr(args, 'fp16_full_eval', False)
        bf16_full_eval = getattr(args, 'bf16_full_eval', False)
        if args.fp16 and bf16_full_eval: args.bf16_full_eval = False; args.fp16_full_eval = True
        if args.bf16 and fp16_full_eval: args.bf16_full_eval = True; args.fp16_full_eval = False
        if force_float32:
            args.bf16_full_eval = False
            args.fp16_full_eval = False
        elif os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32') == 'bfloat16':
            args.bf16_full_eval = True
            args.fp16_full_eval = False
        elif not bf16_full_eval and not fp16_full_eval:
            args.bf16_full_eval = args.bf16
            args.fp16_full_eval = args.fp16
        _output_logits = False
        if locals().get('compute_metrics', None) is not None: _output_logits = True
        if locals().get('preprocess_logits_for_metrics', None) is not None: _output_logits = True
        if _output_logits:
            os.environ['UNSLOTH_RETURN_LOGITS'] = '1'
        if 'max_seq_length' not in locals() and not hasattr(args, 'max_seq_length'):
            pass
        else:
            model_max_seq_length = getattr(model, 'max_seq_length', None)
            args_max_seq_length  = getattr(args,  'max_seq_length', None)
            if args_max_seq_length is None and model_max_seq_length is not None:
                max_seq_length = model.max_seq_length
                if hasattr(args, 'max_seq_length'): args.max_seq_length = max_seq_length
        if model is not None and hasattr(model, 'for_training'):
            model.for_training()
        if 'tokenizer' in locals() and hasattr(tokenizer, 'padding_side'): tokenizer.padding_side = 'right'
        if 'processing_class' in locals():
            if hasattr(processing_class, 'padding_side'): processing_class.padding_side = 'right'
            if hasattr(processing_class, 'tokenizer') and hasattr(processing_class.tokenizer, 'padding_side'): processing_class.tokenizer.padding_side = 'right'
        other_metrics = []
        if not isinstance(reward_funcs, list): _reward_funcs = [reward_funcs]
        else: _reward_funcs = reward_funcs
        for reward_func in _reward_funcs:
            try:
                reward_func_name = reward_func.__name__
                other_metrics.append(f'rewards/{reward_func_name}')
            except: pass
        
        from unsloth_zoo.logging_utils import PatchRLStatistics
        PatchRLStatistics('grpo_trainer', other_metrics)
        
        super().__init__(
            model = model,
            reward_funcs = reward_funcs,
            args = args,
            train_dataset = train_dataset,
            eval_dataset = eval_dataset,
            processing_class = processing_class,
            reward_processing_classes = reward_processing_classes,
            callbacks = callbacks,
            peft_config = peft_config,**kwargs)
        if hasattr(self, 'neftune_hook_handle'):
            self.neftune_hook_handle.remove()
            if hasattr(self, 'neftune_hook_handle'): del self.neftune_hook_handle
        if getattr(args, 'neftune_noise_alpha', None) is not None:
            model.get_input_embeddings().neftune_noise_alpha = self.neftune_noise_alpha
        pass
        
pass