File size: 62,033 Bytes
d5eed08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
"""
2025.3.12
2025.3.14
4.48.3
0.15.2
__UNSLOTH_VERSIONING__
"""
from torch import Tensor
import torch
import torch.nn as nn
from torch.nn import functional as F
from trl.trainer.ppo_trainer import (Accelerator, BaseImageProcessor, CallbackHandler, DEFAULT_CALLBACKS, DEFAULT_PROGRESS_CALLBACK, DataCollatorWithPadding, DataLoader, Dataset, ExportableState, FeatureExtractionMixin, GenerationConfig, INVALID_LOGPROB, OnlineTrainerState, Optional, PPOConfig, PPOTrainer, PeftConfig, PeftModel, PolicyAndValueWrapper, PreTrainedTokenizerBase, PrinterCallback, ProcessorMixin, Trainer, TrainerCallback, TrainerControl, Union, batch_generation, broadcast, contextmanager, create_reference_model, defaultdict, disable_dropout_in_model, exact_div, first_true_indices, forward, gather_object, gc, generate_model_card, get_comet_experiment_url, get_peft_model, get_reporting_integration_callbacks, get_reward, is_peft_available, is_wandb_available, log_table_to_comet_experiment, masked_mean, masked_whiten, math, nn, np, nullcontext, os, pd, peft_module_casting_to_bf16, prepare_deepspeed, print_rich_table, textwrap, time, torch, truncate_response, unwrap_model_for_generation, wandb)


import os
from typing import *
from dataclasses import dataclass, field
from packaging.version import Version
import torch
import numpy as np
from contextlib import nullcontext
from torch.nn import functional as F
from transformers import DataCollatorForSeq2Seq, DataCollatorForLanguageModeling

torch_compile_options = {
    "epilogue_fusion"   : True,
    "max_autotune"      : False,
    "shape_padding"     : True,
    "trace.enabled"     : False,
    "triton.cudagraphs" : False,
}

@torch.compile(dynamic = True, fullgraph = True, options = torch_compile_options,)
def selective_log_softmax(logits, index):
    logits = logits.to(torch.float32)
    selected_logits = torch.gather(logits, dim = -1, index = index.unsqueeze(-1)).squeeze(-1)
    # loop to reduce peak mem consumption
    # logsumexp_values = torch.stack([torch.logsumexp(lg, dim=-1) for lg in logits])
    logsumexp_values = torch.logsumexp(logits, dim = -1)
    per_token_logps = selected_logits - logsumexp_values  # log_softmax(x_i) = x_i - logsumexp(x)
    return per_token_logps
@dataclass
class UnslothPPOConfig(PPOConfig):
    """
    
    Configuration class for the [`PPOTrainer`].

    Using [`~transformers.HfArgumentParser`] we can turn this class into
    [argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the
    command line.

    Parameters:
        exp_name (`str`, *optional*, defaults to `os.path.basename(__file__)[:-3]`):
            Name of this experiment.
        reward_model_path (`str`, *optional*, defaults to `"EleutherAI/pythia-160m"`):
            Path to the reward model.
        model_adapter_name (`str` or `None`, *optional*, defaults to `None`):
            Name of the train target PEFT adapter, when using LoRA with multiple adapters.
        ref_adapter_name (`str` or `None`, *optional*, defaults to `None`):
            Name of the reference PEFT adapter, when using LoRA with multiple adapters.
        num_ppo_epochs (`int`, *optional*, defaults to `4`):
            Number of epochs to train.
        whiten_rewards (`bool`, *optional*, defaults to `False`):
            Whether to whiten the rewards.
        kl_coef (`float`, *optional*, defaults to `0.05`):
            KL coefficient.
        cliprange (`float`, *optional*, defaults to `0.2`):
            Clip range.
        vf_coef (`float`, *optional*, defaults to `0.1`):
            Value function coefficient.
        cliprange_value (`float`, *optional*, defaults to `0.2`):
            Clip range for the value function.
        gamma (`float`, *optional*, defaults to `1.0`):
            Discount factor.
        lam (`float`, *optional*, defaults to `0.95`):
            Lambda value for GAE.
        ds3_gather_for_generation (`bool`, *optional*, defaults to `True`):
            This setting applies to DeepSpeed ZeRO-3. If enabled, the policy model weights are gathered for generation,
            improving generation speed. However, disabling this option allows training models that exceed the VRAM
            capacity of a single GPU, albeit at the cost of slower generation.
    
    """
    vllm_sampling_params: Optional[Any] = field(
        default = None,
        metadata = {'help': 'vLLM SamplingParams'},
    )
    unsloth_num_chunks : Optional[int] = field(
        default = -1,
        metadata = {'help': 'Chunk size to reduce memory usage. -1 is most efficient.'},
    )
    def __init__(
        self,
        output_dir = None,
        overwrite_output_dir = None,
        do_train = False,
        do_eval = False,
        do_predict = False,
        eval_strategy = 'no',
        prediction_loss_only = False,
        per_device_train_batch_size = 4,
        per_device_eval_batch_size = 4,
        per_gpu_train_batch_size = None,
        per_gpu_eval_batch_size = None,
        gradient_accumulation_steps = 2,
        eval_accumulation_steps = 2,
        eval_delay = 0,
        torch_empty_cache_steps = 250,
        learning_rate = 5e-05,
        weight_decay = 0.01,
        adam_beta1 = 0.9,
        adam_beta2 = 0.999,
        adam_epsilon = 1e-08,
        max_grad_norm = 1.0,
        num_train_epochs = 3.0,
        max_steps = -1,
        lr_scheduler_type = 'linear',
        warmup_ratio = 0.1,
        warmup_steps = 0,
        log_level = 'passive',
        log_level_replica = 'warning',
        log_on_each_node = True,
        logging_dir = None,
        logging_strategy = 'steps',
        logging_first_step = False,
        logging_steps = 1,
        logging_nan_inf_filter = False,
        save_strategy = 'steps',
        save_steps = 500,
        save_total_limit = None,
        save_safetensors = True,
        save_on_each_node = False,
        save_only_model = False,
        restore_callback_states_from_checkpoint = False,
        no_cuda = False,
        use_cpu = False,
        use_mps_device = False,
        seed = 3407,
        data_seed = 3407,
        jit_mode_eval = False,
        use_ipex = False,
        bf16 = False,
        fp16 = False,
        fp16_opt_level = 'O1',
        half_precision_backend = 'auto',
        bf16_full_eval = False,
        fp16_full_eval = False,
        tf32 = None,
        local_rank = -1,
        ddp_backend = None,
        tpu_num_cores = None,
        tpu_metrics_debug = False,
        debug = '',
        dataloader_drop_last = False,
        eval_steps = None,
        dataloader_num_workers = 0,
        dataloader_prefetch_factor = None,
        past_index = -1,
        run_name = None,
        disable_tqdm = None,
        remove_unused_columns = True,
        label_names = None,
        load_best_model_at_end = False,
        metric_for_best_model = None,
        greater_is_better = None,
        ignore_data_skip = False,
        fsdp = '',
        fsdp_min_num_params = 0,
        fsdp_config = None,
        fsdp_transformer_layer_cls_to_wrap = None,
        accelerator_config = None,
        deepspeed = None,
        label_smoothing_factor = 0.0,
        optim = 'adamw_8bit',
        optim_args = None,
        adafactor = False,
        group_by_length = False,
        length_column_name = 'length',
        report_to = None,
        ddp_find_unused_parameters = None,
        ddp_bucket_cap_mb = None,
        ddp_broadcast_buffers = None,
        dataloader_pin_memory = True,
        dataloader_persistent_workers = False,
        skip_memory_metrics = True,
        use_legacy_prediction_loop = False,
        push_to_hub = False,
        resume_from_checkpoint = None,
        hub_model_id = None,
        hub_strategy = 'every_save',
        hub_token = None,
        hub_private_repo = None,
        hub_always_push = False,
        gradient_checkpointing = False,
        gradient_checkpointing_kwargs = None,
        include_inputs_for_metrics = False,
        eval_do_concat_batches = True,
        fp16_backend = 'auto',
        evaluation_strategy = None,
        push_to_hub_model_id = None,
        push_to_hub_organization = None,
        push_to_hub_token = None,
        mp_parameters = '',
        auto_find_batch_size = False,
        full_determinism = False,
        torchdynamo = None,
        ray_scope = 'last',
        ddp_timeout = 1800,
        torch_compile = False,
        torch_compile_backend = None,
        torch_compile_mode = None,
        dispatch_batches = None,
        split_batches = None,
        include_tokens_per_second = False,
        include_num_input_tokens_seen = False,
        neftune_noise_alpha = None,
        optim_target_modules = None,
        batch_eval_metrics = False,
        eval_on_start = False,
        use_liger_kernel = False,
        eval_use_gather_object = False,
        average_tokens_across_devices = False,
        dataset_num_proc = None,
        num_mini_batches = 1,
        total_episodes = None,
        local_rollout_forward_batch_size = 64,
        num_sample_generations = 10,
        response_length = 53,
        stop_token = None,
        stop_token_id = None,
        temperature = 0.7,
        missing_eos_penalty = None,
        sft_model_path = 'EleutherAI/pythia-160m',
        world_size = None,
        num_total_batches = None,
        micro_batch_size = None,
        local_batch_size = None,
        batch_size = None,
        local_mini_batch_size = None,
        mini_batch_size = None,
        exp_name = 'ppo_config',
        reward_model_path = 'EleutherAI/pythia-160m',
        model_adapter_name = None,
        ref_adapter_name = None,
        num_ppo_epochs = 4,
        whiten_rewards = False,
        kl_coef = 0.05,
        cliprange = 0.2,
        vf_coef = 0.1,
        cliprange_value = 0.2,
        gamma = 1.0,
        lam = 0.95,
        ds3_gather_for_generation = True,
        vllm_sampling_params = None,
        unsloth_num_chunks = -1,
        **kwargs,
    ):
        if learning_rate < 1e-7: raise FloatingPointError(f'Unsloth: Your learning rate of `{learning_rate}` is too small and less than 1e-7! Consider increasing it, otherwise gradient updates will be close to 0!')
        if learning_rate > 1: raise OverflowError(f'Unsloth: Your learning rate of `{learning_rate}` is way too larger > 1! Consider decreasing it to 1e-1, otherwise gradient updates will explode!')
        if output_dir is None and save_strategy == 'steps' and save_steps == 500:
            output_dir = 'unsloth_training_checkpoints'
            save_strategy = 'no'
        if dataset_num_proc is None:
            from multiprocessing import cpu_count
            dataset_num_proc = cpu_count()
        
        super().__init__(
            output_dir = output_dir,
            overwrite_output_dir = overwrite_output_dir,
            do_train = do_train,
            do_eval = do_eval,
            do_predict = do_predict,
            eval_strategy = eval_strategy,
            prediction_loss_only = prediction_loss_only,
            per_device_train_batch_size = per_device_train_batch_size,
            per_device_eval_batch_size = per_device_eval_batch_size,
            per_gpu_train_batch_size = per_gpu_train_batch_size,
            per_gpu_eval_batch_size = per_gpu_eval_batch_size,
            gradient_accumulation_steps = gradient_accumulation_steps,
            eval_accumulation_steps = eval_accumulation_steps,
            eval_delay = eval_delay,
            torch_empty_cache_steps = torch_empty_cache_steps,
            learning_rate = learning_rate,
            weight_decay = weight_decay,
            adam_beta1 = adam_beta1,
            adam_beta2 = adam_beta2,
            adam_epsilon = adam_epsilon,
            max_grad_norm = max_grad_norm,
            num_train_epochs = num_train_epochs,
            max_steps = max_steps,
            lr_scheduler_type = lr_scheduler_type,
            warmup_ratio = warmup_ratio,
            warmup_steps = warmup_steps,
            log_level = log_level,
            log_level_replica = log_level_replica,
            log_on_each_node = log_on_each_node,
            logging_dir = logging_dir,
            logging_strategy = logging_strategy,
            logging_first_step = logging_first_step,
            logging_steps = logging_steps,
            logging_nan_inf_filter = logging_nan_inf_filter,
            save_strategy = save_strategy,
            save_steps = save_steps,
            save_total_limit = save_total_limit,
            save_safetensors = save_safetensors,
            save_on_each_node = save_on_each_node,
            save_only_model = save_only_model,
            restore_callback_states_from_checkpoint = restore_callback_states_from_checkpoint,
            no_cuda = no_cuda,
            use_cpu = use_cpu,
            use_mps_device = use_mps_device,
            seed = seed,
            data_seed = data_seed,
            jit_mode_eval = jit_mode_eval,
            use_ipex = use_ipex,
            bf16 = bf16,
            fp16 = fp16,
            fp16_opt_level = fp16_opt_level,
            half_precision_backend = half_precision_backend,
            bf16_full_eval = bf16_full_eval,
            fp16_full_eval = fp16_full_eval,
            tf32 = tf32,
            local_rank = local_rank,
            ddp_backend = ddp_backend,
            tpu_num_cores = tpu_num_cores,
            tpu_metrics_debug = tpu_metrics_debug,
            debug = debug,
            dataloader_drop_last = dataloader_drop_last,
            eval_steps = eval_steps,
            dataloader_num_workers = dataloader_num_workers,
            dataloader_prefetch_factor = dataloader_prefetch_factor,
            past_index = past_index,
            run_name = run_name,
            disable_tqdm = disable_tqdm,
            remove_unused_columns = remove_unused_columns,
            label_names = label_names,
            load_best_model_at_end = load_best_model_at_end,
            metric_for_best_model = metric_for_best_model,
            greater_is_better = greater_is_better,
            ignore_data_skip = ignore_data_skip,
            fsdp = fsdp,
            fsdp_min_num_params = fsdp_min_num_params,
            fsdp_config = fsdp_config,
            fsdp_transformer_layer_cls_to_wrap = fsdp_transformer_layer_cls_to_wrap,
            accelerator_config = accelerator_config,
            deepspeed = deepspeed,
            label_smoothing_factor = label_smoothing_factor,
            optim = optim,
            optim_args = optim_args,
            adafactor = adafactor,
            group_by_length = group_by_length,
            length_column_name = length_column_name,
            report_to = report_to,
            ddp_find_unused_parameters = ddp_find_unused_parameters,
            ddp_bucket_cap_mb = ddp_bucket_cap_mb,
            ddp_broadcast_buffers = ddp_broadcast_buffers,
            dataloader_pin_memory = dataloader_pin_memory,
            dataloader_persistent_workers = dataloader_persistent_workers,
            skip_memory_metrics = skip_memory_metrics,
            use_legacy_prediction_loop = use_legacy_prediction_loop,
            push_to_hub = push_to_hub,
            resume_from_checkpoint = resume_from_checkpoint,
            hub_model_id = hub_model_id,
            hub_strategy = hub_strategy,
            hub_token = hub_token,
            hub_private_repo = hub_private_repo,
            hub_always_push = hub_always_push,
            gradient_checkpointing = gradient_checkpointing,
            gradient_checkpointing_kwargs = gradient_checkpointing_kwargs,
            include_inputs_for_metrics = include_inputs_for_metrics,
            eval_do_concat_batches = eval_do_concat_batches,
            fp16_backend = fp16_backend,
            evaluation_strategy = evaluation_strategy,
            push_to_hub_model_id = push_to_hub_model_id,
            push_to_hub_organization = push_to_hub_organization,
            push_to_hub_token = push_to_hub_token,
            mp_parameters = mp_parameters,
            auto_find_batch_size = auto_find_batch_size,
            full_determinism = full_determinism,
            torchdynamo = torchdynamo,
            ray_scope = ray_scope,
            ddp_timeout = ddp_timeout,
            torch_compile = torch_compile,
            torch_compile_backend = torch_compile_backend,
            torch_compile_mode = torch_compile_mode,
            dispatch_batches = dispatch_batches,
            split_batches = split_batches,
            include_tokens_per_second = include_tokens_per_second,
            include_num_input_tokens_seen = include_num_input_tokens_seen,
            neftune_noise_alpha = neftune_noise_alpha,
            optim_target_modules = optim_target_modules,
            batch_eval_metrics = batch_eval_metrics,
            eval_on_start = eval_on_start,
            use_liger_kernel = use_liger_kernel,
            eval_use_gather_object = eval_use_gather_object,
            average_tokens_across_devices = average_tokens_across_devices,
            dataset_num_proc = dataset_num_proc,
            num_mini_batches = num_mini_batches,
            total_episodes = total_episodes,
            local_rollout_forward_batch_size = local_rollout_forward_batch_size,
            num_sample_generations = num_sample_generations,
            response_length = response_length,
            stop_token = stop_token,
            stop_token_id = stop_token_id,
            temperature = temperature,
            missing_eos_penalty = missing_eos_penalty,
            sft_model_path = sft_model_path,
            world_size = world_size,
            num_total_batches = num_total_batches,
            micro_batch_size = micro_batch_size,
            local_batch_size = local_batch_size,
            batch_size = batch_size,
            local_mini_batch_size = local_mini_batch_size,
            mini_batch_size = mini_batch_size,
            exp_name = exp_name,
            reward_model_path = reward_model_path,
            model_adapter_name = model_adapter_name,
            ref_adapter_name = ref_adapter_name,
            num_ppo_epochs = num_ppo_epochs,
            whiten_rewards = whiten_rewards,
            kl_coef = kl_coef,
            cliprange = cliprange,
            vf_coef = vf_coef,
            cliprange_value = cliprange_value,
            gamma = gamma,
            lam = lam,
            ds3_gather_for_generation = ds3_gather_for_generation,**kwargs)
        self.vllm_sampling_params = vllm_sampling_params
        self.unsloth_num_chunks = unsloth_num_chunks
pass

class _UnslothPPOTrainer(Trainer):
    _tag_names = ["trl", "ppo"]

    def __init__(
        self,
        args: PPOConfig,
        processing_class: Optional[
            Union[PreTrainedTokenizerBase, BaseImageProcessor, FeatureExtractionMixin, ProcessorMixin]
        ],
        model: nn.Module,
        ref_model: Optional[nn.Module],
        reward_model: nn.Module,
        train_dataset: Dataset,
        value_model: Optional[nn.Module] = None,
        data_collator: Optional[DataCollatorWithPadding] = None,
        eval_dataset: Optional[Union[Dataset, dict[str, Dataset]]] = None,
        # less commonly used
        optimizers: tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None),
        callbacks: Optional[list[TrainerCallback]] = None,
        peft_config: Optional["PeftConfig"] = None,
    ) -> None:
        if ref_model is model:
            raise ValueError(
                "`model` and `ref_model` cannot be the same object. If you want `ref_model` to be the "
                "same as `model`, you must make a copy of it, or `None` if you use peft."
            )

        self.args = args
        self.processing_class = processing_class
        self.policy_model = model

        # Define the collator if not provided
        if data_collator is None:
            data_collator = DataCollatorWithPadding(self.processing_class)

        # Handle stop token settings: update policy model's generation_config to use provided stop token
        if args.stop_token and args.stop_token_id:
            raise ValueError("You cannot set both `stop_token` and `stop_token_id`.")
        elif args.stop_token:
            if args.stop_token == "eos":
                self.policy_model.generation_config.eos_token_id = self.stop_token_id = processing_class.eos_token_id
            else:
                raise ValueError(
                    f"Unknown `stop_token` {args.stop_token}. Allowed values are: `'eos'` and `None` (no stop token)."
                )
        else:
            self.policy_model.generation_config.eos_token_id = self.stop_token_id = args.stop_token_id  # None or int

        # peft support
        if not is_peft_available() and peft_config is not None:
            raise ImportError(
                "PEFT is not installed and you passed a `peft_config` in the trainer's kwargs, please install it to use the PEFT models"
            )
        elif is_peft_available() and peft_config is not None:
            # if model is a peft model and we have a peft_confg, we merge and unload it first
            if isinstance(self.policy_model, PeftModel):
                self.policy_model = self.policy_model.merge_and_unload()

            # get peft model with the given config
            self.policy_model = get_peft_model(self.policy_model, peft_config)
            if args.bf16 and getattr(self.policy_model, "is_loaded_in_4bit", False):
                peft_module_casting_to_bf16(self.policy_model)

        self.is_peft_model = is_peft_available() and isinstance(self.policy_model, PeftModel)
        self.model_adapter_name = args.model_adapter_name
        self.ref_adapter_name = args.ref_adapter_name

        if ref_model:
            self.ref_model = ref_model
        elif self.is_peft_model:
            self.ref_model = None
        else:
            self.ref_model = create_reference_model(self.policy_model)

        self.reward_model = reward_model
        self.train_dataset = train_dataset
        self.train_dataset_len = len(train_dataset)
        self.value_model = value_model
        self.data_collator = data_collator
        self.eval_dataset = eval_dataset
        self.optimizer, self.lr_scheduler = optimizers
        self.optimizer_cls_and_kwargs = None  # needed for transformers >= 4.47

        #########
        # calculate various batch sizes
        #########
        if args.total_episodes is None:  # allow the users to define episodes in terms of epochs.
            args.total_episodes = int(args.num_train_epochs * self.train_dataset_len)
        accelerator = Accelerator(gradient_accumulation_steps=args.gradient_accumulation_steps)
        self.accelerator = accelerator
        args.world_size = accelerator.num_processes
        args.local_batch_size = (
            args.per_device_train_batch_size * args.gradient_accumulation_steps * args.num_mini_batches
        )
        args.micro_batch_size = int(args.per_device_train_batch_size * args.world_size)
        args.batch_size = int(args.local_batch_size * args.world_size)
        args.mini_batch_size = exact_div(
            args.batch_size, args.num_mini_batches, "`batch_size` must be a multiple of `num_mini_batches`"
        )
        args.local_mini_batch_size = exact_div(
            args.local_batch_size, args.num_mini_batches, "`local_batch_size` must be a multiple of `num_mini_batches`"
        )
        if args.whiten_rewards:
            assert (
                args.local_mini_batch_size >= 8
            ), f"Per-rank minibatch size {args.local_mini_batch_size} is insufficient for whitening"
        # `per_rank_rollout_batch_size` is our `args.local_batch_size`
        # `per_rank_minibatch_size` is our `args.local_mini_batch_size`
        args.num_total_batches = math.ceil(
            args.total_episodes / args.batch_size
        )  # we may train for more than `total_episodes`
        time_tensor = torch.tensor(int(time.time()), device=accelerator.device)
        time_int = broadcast(time_tensor, 0).item()  # avoid different timestamps across processes
        args.run_name = f"{args.exp_name}__{args.seed}__{time_int}"
        self.local_seed = args.seed + accelerator.process_index * 100003  # Prime
        if args.num_sample_generations > 0:
            self.sample_generations_freq = max(1, args.num_total_batches // args.num_sample_generations)
        self.local_dataloader_batch_size = args.local_batch_size

        #########
        # setup model, optimizer, and others
        #########
        for module in [self.policy_model, self.ref_model, self.value_model, self.reward_model]:
            if module is not None:
                disable_dropout_in_model(module)
        self.model = PolicyAndValueWrapper(self.policy_model, self.value_model)
        self.model.config = self.policy_model.config  # needed for pushing to hub
        self.create_optimizer_and_scheduler(
            num_training_steps=args.num_total_batches
        )  # note that we are calling `self.lr_scheduler.step()` manually only at the batch level

        #########
        ### trainer specifics
        #########
        default_callbacks = DEFAULT_CALLBACKS + get_reporting_integration_callbacks(self.args.report_to)
        self.callbacks = default_callbacks if callbacks is None else default_callbacks + callbacks
        self.callback_handler = CallbackHandler(
            self.callbacks, self.model, self.processing_class, self.optimizer, self.lr_scheduler
        )
        self.add_callback(PrinterCallback if self.args.disable_tqdm else DEFAULT_PROGRESS_CALLBACK)
        self.control = TrainerControl()
        self.state = OnlineTrainerState(
            is_local_process_zero=self.is_local_process_zero(),
            is_world_process_zero=self.is_world_process_zero(),
            stateful_callbacks=[
                cb for cb in self.callback_handler.callbacks + [self.control] if isinstance(cb, ExportableState)
            ],
        )
        self.current_flos = 0
        self.hp_search_backend = None
        self.is_deepspeed_enabled = getattr(self.accelerator.state, "deepspeed_plugin", None) is not None
        self.is_fsdp_enabled = getattr(self.accelerator.state, "fsdp_plugin", None) is not None
        # Create distant repo and output directory if needed
        self.hub_model_id = None
        if self.args.push_to_hub:
            self.init_hf_repo()
        if self.args.should_save:
            os.makedirs(self.args.output_dir, exist_ok=True)

        # Add tags for models that have been loaded with the correct transformers version
        if hasattr(self.model, "add_model_tags"):
            self.model.add_model_tags(self._tag_names)

        #########
        ### setup dataloader
        #########
        self.dataloader = DataLoader(
            self.train_dataset,
            batch_size=self.local_dataloader_batch_size,
            shuffle=True,
            collate_fn=self.data_collator,
            drop_last=True,  # needed; otherwise the last batch will be of ragged shape
        )
        # sync random states for DataLoader(shuffle=True) before `accelerator.prepare`
        # see https://gist.github.com/vwxyzjn/2581bff1e48e185e0b85b6dfe1def79c
        torch.manual_seed(args.seed)
        self.model, self.optimizer, self.dataloader = accelerator.prepare(self.model, self.optimizer, self.dataloader)
        torch.manual_seed(self.local_seed)  # reset the local seed again

        self.eval_dataloader = DataLoader(
            self.eval_dataset,
            batch_size=args.per_device_eval_batch_size,
            collate_fn=self.data_collator,
            drop_last=True,
        )  # no need to shuffle eval dataset
        self.eval_dataloader = accelerator.prepare(self.eval_dataloader)

        if self.is_deepspeed_enabled:
            self.reward_model = prepare_deepspeed(
                self.reward_model, args.per_device_train_batch_size, args.fp16, args.bf16
            )

            if self.ref_model is None:
                if not self.is_peft_model:
                    raise ValueError("No reference model and model is not a Peft model.")
            else:
                self.ref_model = prepare_deepspeed(
                    self.ref_model, args.per_device_train_batch_size, args.fp16, args.bf16
                )
        else:
            if self.ref_model is None:
                if not self.is_peft_model:
                    raise ValueError("No reference model and model is not a Peft model.")
            else:
                self.ref_model = self.ref_model.to(self.accelerator.device)
            self.reward_model = self.reward_model.to(self.accelerator.device)

    def get_train_dataloader(self) -> DataLoader:
        return self.dataloader

    def get_eval_dataloader(self) -> DataLoader:
        return self.eval_dataloader

    @contextmanager
    def null_ref_context(self):
        """Context manager for handling null reference model (that is, peft adapter manipulation)."""
        with (
            self.accelerator.unwrap_model(self.model.policy).disable_adapter()
            if self.is_peft_model and not self.ref_adapter_name
            else nullcontext()
        ):
            if self.ref_adapter_name:
                self.model.policy.set_adapter(self.ref_adapter_name)
            yield
            if self.ref_adapter_name:
                self.model.policy.set_adapter(self.model_adapter_name or "default")

    def save_model(self, output_dir: Optional[str] = None, _internal_call: bool = False):
        backup_model = self.model
        self.model = self.model.policy  # save only the policy

        if self.is_deepspeed_enabled:
            backup_deepspeed = self.deepspeed
            self.deepspeed = self.model

        super().save_model(output_dir, _internal_call)

        self.model = backup_model

        if self.is_deepspeed_enabled:
            self.deepspeed = backup_deepspeed

    def train(self):
        args = self.args
        accelerator = self.accelerator
        optimizer = self.optimizer
        model = self.model
        ref_policy = self.ref_model
        reward_model = self.reward_model
        processing_class = self.processing_class
        dataloader = self.dataloader
        device = accelerator.device

        def repeat_generator():
            while True:
                yield from dataloader

        iter_dataloader = iter(repeat_generator())
        generation_config = GenerationConfig(
            max_new_tokens=args.response_length,
            temperature=(args.temperature + 1e-7),
            top_k=0.0,
            top_p=1.0,
            do_sample=True,
        )

        accelerator.print("===training policy===")
        start_time = time.time()
        stats_shape = (args.num_ppo_epochs, args.num_mini_batches, args.gradient_accumulation_steps)
        approxkl_stats = torch.zeros(stats_shape, device=device)
        pg_clipfrac_stats = torch.zeros(stats_shape, device=device)
        pg_loss_stats = torch.zeros(stats_shape, device=device)
        vf_loss_stats = torch.zeros(stats_shape, device=device)
        vf_clipfrac_stats = torch.zeros(stats_shape, device=device)
        entropy_stats = torch.zeros(stats_shape, device=device)
        ratio_stats = torch.zeros(stats_shape, device=device)
        model.train()

        # trainer state initialization
        self.state.global_step = 0
        self.state.episode = 0
        self.state.max_steps = args.num_total_batches * args.num_mini_batches
        self.state.num_train_epochs = args.total_episodes / self.train_dataset_len
        # Compute absolute values for logging, eval, and save if given as ratio
        if args.logging_steps is not None:
            if args.logging_steps < 1:
                self.state.logging_steps = math.ceil(self.state.max_steps * args.logging_steps)
            else:
                self.state.logging_steps = args.logging_steps
        if args.eval_steps is not None:
            if args.eval_steps < 1:
                self.state.eval_steps = math.ceil(self.state.max_steps * args.eval_steps)
            else:
                self.state.eval_steps = args.eval_steps
        if args.save_steps is not None:
            if args.save_steps < 1:
                self.state.save_steps = math.ceil(self.state.max_steps * args.save_steps)
            else:
                self.state.save_steps = args.save_steps
        self.control = self.callback_handler.on_train_begin(args, self.state, self.control)

        # backward compatibility
        if self.is_deepspeed_enabled:
            self.deepspeed = self.model
            self.model_wrapped = self.model

        for update in range(1, args.num_total_batches + 1):
            self.state.episode += 1 * args.batch_size
            data = next(iter_dataloader)
            with torch.no_grad():
                queries = data["input_ids"].to(device)
                context_length = queries.shape[1]
                responses = []
                postprocessed_responses = []
                logprobs = []
                ref_logprobs = []
                scores = []
                sequence_lengths = []
                values = []
                with unwrap_model_for_generation(
                    self.model, self.accelerator, gather_deepspeed3_params=self.args.ds3_gather_for_generation
                ) as unwrapped_model:
                    query_responses, logitss = batch_generation(
                        unwrapped_model.policy,
                        queries,
                        args.local_rollout_forward_batch_size,
                        processing_class.pad_token_id,
                        generation_config,
                    )

                for i in range(0, queries.shape[0], args.local_rollout_forward_batch_size):
                    query = queries[i : i + args.local_rollout_forward_batch_size]
                    query_response = query_responses[i : i + args.local_rollout_forward_batch_size]
                    response = query_response[:, context_length:]
                    logits = logitss[i : i + args.local_rollout_forward_batch_size]
                    logprob = selective_log_softmax(logits, response)
                    del logits
                    torch.cuda.empty_cache()

                    if ref_policy is None:
                        with self.null_ref_context():
                            ref_output = forward(model.policy, query_response, processing_class.pad_token_id)
                    else:
                        ref_output = forward(ref_policy, query_response, processing_class.pad_token_id)
                    ref_logits = ref_output.logits[:, context_length - 1 : -1]
                    ref_logits /= args.temperature + 1e-7
                    ref_logprob = selective_log_softmax(ref_logits, response)
                    del ref_output, ref_logits
                    torch.cuda.empty_cache()

                    # Response Processing 1. truncate response after the first occurrence of `stop_token_id`
                    postprocessed_response = response
                    if self.stop_token_id is not None:  # handle the edge case when stop_token_id exists but is 0
                        postprocessed_response = truncate_response(
                            self.stop_token_id, processing_class.pad_token_id, response
                        )

                    # Response Processing 2. run reward model on the truncated responses
                    postprocessed_query_response = torch.cat((query, postprocessed_response), 1)
                    sequence_length = first_true_indices(postprocessed_response == processing_class.pad_token_id) - 1
                    unwrapped_value_model = accelerator.unwrap_model(model).value_model
                    full_value, _, _ = get_reward(
                        unwrapped_value_model, query_response, processing_class.pad_token_id, context_length
                    )
                    value = full_value[:, context_length - 1 : -1].squeeze(-1)
                    _, score, _ = get_reward(
                        reward_model, postprocessed_query_response, processing_class.pad_token_id, context_length
                    )

                    responses.append(response)
                    postprocessed_responses.append(postprocessed_response)
                    logprobs.append(logprob)
                    ref_logprobs.append(ref_logprob)
                    sequence_lengths.append(sequence_length)
                    scores.append(score)
                    values.append(value)
                responses = torch.cat(responses, 0)
                postprocessed_responses = torch.cat(postprocessed_responses, 0)
                logprobs = torch.cat(logprobs, 0)
                ref_logprobs = torch.cat(ref_logprobs, 0)
                sequence_lengths = torch.cat(sequence_lengths, 0)
                scores = torch.cat(scores, 0)
                values = torch.cat(values, 0)
                del (logprob, ref_logprob, full_value, value, score, unwrapped_model)
                torch.cuda.empty_cache()
                gc.collect()

                # Response Processing 3. Filter completion. Ensure that the sample contains stop_token_id
                # Completions not passing that filter will receive a lower score.
                contain_eos_token = torch.any(postprocessed_responses == self.processing_class.eos_token_id, dim=-1)
                if self.args.missing_eos_penalty is not None:
                    scores[~contain_eos_token] -= self.args.missing_eos_penalty
                # accelerator.print(f"{scores=}, {(contain_eos_token.sum() / len(contain_eos_token))=}")

                # be very careful with `padding_mask_p1`; see https://excalidraw.com/#json=LWnzG4w2k5DjF_EOL_xPt,e2w3a-hFJ_gX5vOfeyXGTw
                response_idxs = torch.arange(responses.shape[1], device=responses.device).repeat(responses.shape[0], 1)
                padding_mask = response_idxs > sequence_lengths.unsqueeze(1)
                logprobs = torch.masked_fill(logprobs, padding_mask, INVALID_LOGPROB)
                ref_logprobs = torch.masked_fill(ref_logprobs, padding_mask, INVALID_LOGPROB)
                sequence_lengths_p1 = sequence_lengths + 1
                padding_mask_p1 = response_idxs > (sequence_lengths_p1.unsqueeze(1))
                values = torch.masked_fill(values, padding_mask_p1, 0)

                # 4. compute rewards
                kl = logprobs - ref_logprobs
                non_score_reward = -args.kl_coef * kl
                rewards = non_score_reward.clone()
                actual_start = torch.arange(rewards.size(0), device=rewards.device)
                actual_end = torch.where(sequence_lengths_p1 < rewards.size(1), sequence_lengths_p1, sequence_lengths)
                rewards[[actual_start, actual_end]] += scores

                # 5. whiten rewards
                if args.whiten_rewards:
                    rewards = masked_whiten(rewards, mask=~padding_mask_p1, shift_mean=False)
                    rewards = torch.masked_fill(rewards, padding_mask_p1, 0)

                # 6. compute advantages and returns
                lastgaelam = 0
                advantages_reversed = []
                gen_length = responses.shape[1]
                for t in reversed(range(gen_length)):
                    nextvalues = values[:, t + 1] if t < gen_length - 1 else 0.0
                    delta = rewards[:, t] + args.gamma * nextvalues - values[:, t]
                    lastgaelam = delta + args.gamma * args.lam * lastgaelam
                    advantages_reversed.append(lastgaelam)
                advantages = torch.stack(advantages_reversed[::-1], axis=1)
                returns = advantages + values
                advantages = masked_whiten(advantages, ~padding_mask)
                advantages = torch.masked_fill(advantages, padding_mask, 0)
                torch.cuda.empty_cache()

            # Do multiple epochs of PPO training, with a fresh random shuffle in each epoch
            for ppo_epoch_idx in range(args.num_ppo_epochs):
                b_inds = np.random.permutation(args.local_batch_size)
                minibatch_idx = 0
                for mini_batch_start in range(0, args.local_batch_size, args.local_mini_batch_size):
                    mini_batch_end = mini_batch_start + args.local_mini_batch_size
                    mini_batch_inds = b_inds[mini_batch_start:mini_batch_end]
                    gradient_accumulation_idx = 0
                    for micro_batch_start in range(0, args.local_mini_batch_size, args.per_device_train_batch_size):
                        with accelerator.accumulate(model):
                            micro_batch_end = micro_batch_start + args.per_device_train_batch_size
                            micro_batch_inds = mini_batch_inds[micro_batch_start:micro_batch_end]
                            mb_advantage = advantages[micro_batch_inds]
                            mb_responses = responses[micro_batch_inds]
                            mb_query_responses = query_responses[micro_batch_inds]
                            mb_logprobs = logprobs[micro_batch_inds]
                            mb_return = returns[micro_batch_inds]
                            mb_values = values[micro_batch_inds]

                            output, vpred_temp = forward(model, mb_query_responses, processing_class.pad_token_id)
                            logits = output.logits[:, context_length - 1 : -1]
                            logits /= args.temperature + 1e-7
                            new_logprobs = selective_log_softmax(logits, mb_responses)
                            new_logprobs = torch.masked_fill(
                                new_logprobs, padding_mask[micro_batch_inds], INVALID_LOGPROB
                            )
                            vpred = vpred_temp[:, context_length - 1 : -1].squeeze(-1)
                            vpred = torch.masked_fill(vpred, padding_mask_p1[micro_batch_inds], 0)
                            vpredclipped = torch.clamp(
                                vpred,
                                mb_values - args.cliprange_value,
                                mb_values + args.cliprange_value,
                            )
                            vf_losses1 = torch.square(vpred - mb_return)
                            vf_losses2 = torch.square(vpredclipped - mb_return)
                            vf_loss_max = torch.max(vf_losses1, vf_losses2)
                            vf_loss = 0.5 * masked_mean(vf_loss_max, ~padding_mask_p1[micro_batch_inds])
                            vf_clipfrac = masked_mean(
                                (vf_losses2 > vf_losses1).float(), ~padding_mask_p1[micro_batch_inds]
                            )
                            logprobs_diff = new_logprobs - mb_logprobs
                            ratio = torch.exp(logprobs_diff)
                            pg_losses = -mb_advantage * ratio
                            pg_losses2 = -mb_advantage * torch.clamp(ratio, 1.0 - args.cliprange, 1.0 + args.cliprange)
                            pg_loss_max = torch.max(pg_losses, pg_losses2)
                            pg_loss = masked_mean(pg_loss_max, ~padding_mask[micro_batch_inds])
                            loss = pg_loss + args.vf_coef * vf_loss
                            accelerator.backward(loss)
                            optimizer.step()
                            optimizer.zero_grad()
                            with torch.no_grad():
                                pg_clipfrac = masked_mean(
                                    (pg_losses2 > pg_losses).float(), ~padding_mask[micro_batch_inds]
                                )
                                prob_dist = torch.nn.functional.softmax(logits, dim=-1)
                                entropy = torch.logsumexp(logits, dim=-1) - torch.sum(prob_dist * logits, dim=-1)
                                approxkl = 0.5 * (logprobs_diff**2).mean()
                                approxkl_stats[ppo_epoch_idx, minibatch_idx, gradient_accumulation_idx] = approxkl
                                pg_clipfrac_stats[ppo_epoch_idx, minibatch_idx, gradient_accumulation_idx] = (
                                    pg_clipfrac
                                )
                                pg_loss_stats[ppo_epoch_idx, minibatch_idx, gradient_accumulation_idx] = pg_loss
                                vf_loss_stats[ppo_epoch_idx, minibatch_idx, gradient_accumulation_idx] = vf_loss
                                vf_clipfrac_stats[ppo_epoch_idx, minibatch_idx, gradient_accumulation_idx] = (
                                    vf_clipfrac
                                )
                                entropy_stats[ppo_epoch_idx, minibatch_idx, gradient_accumulation_idx] = entropy.mean()
                                ratio_stats[ppo_epoch_idx, minibatch_idx, gradient_accumulation_idx] = ratio.mean()
                        gradient_accumulation_idx += 1
                    minibatch_idx += 1
                    # del everything and empty cache
                    # fmt: off
                    del (
                        output, vpred_temp, logits, new_logprobs, vpred, vpredclipped,
                        vf_losses1, vf_losses2, vf_loss, vf_clipfrac, logprobs_diff, ratio, pg_losses, pg_losses2, pg_loss_max,
                        pg_loss, loss, pg_clipfrac, prob_dist, entropy, approxkl, mb_return,
                        mb_advantage, mb_values, mb_responses, mb_query_responses, mb_logprobs,
                    )
                    # fmt: on
                    torch.cuda.empty_cache()
            with torch.no_grad():
                mean_kl = kl.sum(1).mean()
                mean_entropy = (-logprobs).sum(1).mean()
                mean_non_score_reward = non_score_reward.sum(1).mean()
                rlhf_reward = mean_non_score_reward + scores.mean()
                eps = int(self.state.episode / (time.time() - start_time))
                metrics = {}
                metrics["eps"] = eps
                metrics["objective/kl"] = self.accelerator.gather_for_metrics(mean_kl).mean().item()
                metrics["objective/entropy"] = self.accelerator.gather_for_metrics(mean_entropy).mean().item()
                metrics["objective/non_score_reward"] = (
                    self.accelerator.gather_for_metrics(mean_non_score_reward).mean().item()
                )
                metrics["objective/rlhf_reward"] = self.accelerator.gather_for_metrics(rlhf_reward).mean().item()
                metrics["objective/scores"] = self.accelerator.gather_for_metrics(scores.mean()).mean().item()
                metrics["policy/approxkl_avg"] = self.accelerator.gather_for_metrics(approxkl_stats).mean().item()
                metrics["policy/clipfrac_avg"] = self.accelerator.gather_for_metrics(pg_clipfrac_stats).mean().item()
                metrics["loss/policy_avg"] = self.accelerator.gather_for_metrics(pg_loss_stats).mean().item()
                metrics["loss/value_avg"] = self.accelerator.gather_for_metrics(vf_loss_stats).mean().item()
                metrics["val/clipfrac_avg"] = self.accelerator.gather_for_metrics(vf_clipfrac_stats).mean().item()
                metrics["policy/entropy_avg"] = self.accelerator.gather_for_metrics(entropy_stats).mean().item()
                metrics["val/ratio"] = self.accelerator.gather_for_metrics(ratio_stats).mean().item()
                metrics["val/ratio_var"] = self.accelerator.gather_for_metrics(ratio_stats).var().item()
                metrics["val/num_eos_tokens"] = (responses == processing_class.eos_token_id).sum().item()
                metrics["lr"] = self.lr_scheduler.get_last_lr()[0]
                metrics["episode"] = self.state.episode
                self.state.epoch = self.state.episode / self.train_dataset_len  # used by self.log
                self.state.global_step += 1
                self.log(metrics)

            self.lr_scheduler.step()
            self.control = self.callback_handler.on_step_end(args, self.state, self.control)
            if self.control.should_save:
                self._save_checkpoint(model, trial=None)
                self.control = self.callback_handler.on_save(self.args, self.state, self.control)
            del kl, mean_kl, mean_entropy, mean_non_score_reward, scores, metrics, non_score_reward
            torch.cuda.empty_cache()
            gc.collect()

            if args.num_sample_generations > 0 and (update - 1) % self.sample_generations_freq == 0:
                self.generate_completions(sampling=True)
                torch.cuda.empty_cache()
            del (
                query_responses,
                responses,
                postprocessed_responses,
                logprobs,
                ref_logprobs,
                values,
                sequence_lengths,
                contain_eos_token,
                sequence_lengths_p1,
                response_idxs,
                padding_mask,
                padding_mask_p1,
                rewards,
                actual_start,
                actual_end,
                advantages,
                returns,
            )
            torch.cuda.empty_cache()

        # HF trainer specifics
        self.control = self.callback_handler.on_train_end(args, self.state, self.control)
        if self.control.should_save:
            self._save_checkpoint(model, trial=None, metrics=None)
            self.control = self.callback_handler.on_save(self.args, self.state, self.control)

    def generate_completions(self, sampling: bool = False):
        args = self.args
        processing_class = self.processing_class
        generation_config = GenerationConfig(
            max_new_tokens=self.args.response_length,
            temperature=(0.01 + 1e-7),
            top_k=0.0,
            top_p=1.0,
            do_sample=True,
        )

        table = defaultdict(list)
        with unwrap_model_for_generation(
            self.model, self.accelerator, gather_deepspeed3_params=self.args.ds3_gather_for_generation
        ) as unwrapped_model:
            for batch in self.eval_dataloader:
                query = batch["input_ids"]
                with torch.no_grad():
                    context_length = query.shape[1]
                    query_response, _ = batch_generation(
                        unwrapped_model.policy,
                        query,
                        query.shape[0],
                        processing_class.pad_token_id,
                        generation_config,
                    )
                    response = query_response[:, context_length:]
                    postprocessed_response = response
                    if self.stop_token_id is not None:  # handle the edge case when stop_token_id exists but is 0
                        postprocessed_response = truncate_response(
                            self.stop_token_id, processing_class.pad_token_id, response
                        )
                    table["query"].extend(
                        gather_object(processing_class.batch_decode(query, skip_special_tokens=True))
                    )
                    table["model response"].extend(
                        gather_object(processing_class.batch_decode(postprocessed_response))
                    )

                    postprocessed_query_response = torch.cat((query, postprocessed_response), 1)
                    _, score, _ = get_reward(
                        self.reward_model, postprocessed_query_response, processing_class.pad_token_id, context_length
                    )
                    table["score"].extend(self.accelerator.gather_for_metrics(score).float().cpu().numpy())

                if sampling:
                    break
        df = pd.DataFrame(table)

        if self.accelerator.is_main_process:
            print_rich_table(df.iloc[0 : 0 + 5])
            if "wandb" in args.report_to:
                import wandb

                if wandb.run is not None:
                    wandb.log({"completions": wandb.Table(dataframe=df)})

            if "comet_ml" in args.report_to:
                log_table_to_comet_experiment(
                    name="completions.csv",
                    table=df,
                )

    def create_model_card(
        self,
        model_name: Optional[str] = None,
        dataset_name: Optional[str] = None,
        tags: Union[str, list[str], None] = None,
    ):
        """
        Creates a draft of a model card using the information available to the `Trainer`.

        Args:
            model_name (`str` or `None`, *optional*, defaults to `None`):
                Name of the model.
            dataset_name (`str` or `None`, *optional*, defaults to `None`):
                Name of the dataset used for training.
            tags (`str`, `list[str]` or `None`, *optional*, defaults to `None`):
                Tags to be associated with the model card.
        """
        if not self.is_world_process_zero():
            return

        if hasattr(self.model.config, "_name_or_path") and not os.path.isdir(self.model.config._name_or_path):
            base_model = self.model.config._name_or_path
        else:
            base_model = None

        tags = tags or []
        if isinstance(tags, str):
            tags = [tags]

        if hasattr(self.model.config, "unsloth_version"):
            tags.append("unsloth")

        citation = textwrap.dedent("""\
        @article{mziegler2019fine-tuning,
            title        = {{Fine-Tuning Language Models from Human Preferences}},
            author       = {Daniel M. Ziegler and Nisan Stiennon and Jeffrey Wu and Tom B. Brown and Alec Radford and Dario Amodei and Paul F. Christiano and Geoffrey Irving},
            year         = 2019,
            eprint       = {arXiv:1909.08593}
        }""")

        model_card = generate_model_card(
            base_model=base_model,
            model_name=model_name,
            hub_model_id=self.hub_model_id,
            dataset_name=dataset_name,
            tags=tags,
            wandb_url=wandb.run.get_url() if is_wandb_available() and wandb.run is not None else None,
            comet_url=get_comet_experiment_url(),
            trainer_name="PPO",
            trainer_citation=citation,
            paper_title="Fine-Tuning Language Models from Human Preferences",
            paper_id="1909.08593",
        )

        model_card.save(os.path.join(self.args.output_dir, "README.md"))
class UnslothPPOTrainer(_UnslothPPOTrainer):
    """
    
    """
    def __init__(
        self,
        args,
        processing_class,
        model,
        ref_model,
        reward_model,
        train_dataset,
        value_model = None,
        data_collator = None,
        eval_dataset = None,
        callbacks = None,
        peft_config = None,
        **kwargs
    ):
        if args is None: args = UnslothPPOConfig()
        use_bf16 = getattr(args, 'bf16', False)
        use_fp16 = getattr(args, 'fp16', False)
        force_float32 = False
        if os.environ.get('UNSLOTH_FORCE_FLOAT32', '0') == '1':
            print('Unsloth: Switching to float32 training since model cannot work with float16')
            force_float32 = True
        mixed_precision_dtype = os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32')
        dtype = getattr(model.config, 'torch_dtype', None)
        if dtype is None: dtype = model.get_input_embeddings().dtype
        from unsloth_zoo.utils import _get_dtype
        dtype = _get_dtype(dtype)
        float16 = dtype == torch.float16
        if not force_float32 and (float16 and use_bf16): raise TypeError('Unsloth: Model is in float16 precision but you want to use bfloat16 precision. Set fp16 to `True` and bf16 to `False`')
        if not force_float32 and (not float16 and use_fp16): raise TypeError('Unsloth: Model is in bfloat16 precision but you want to use float16 precision. Set fp16 to `False` and bf16 to `True`')
        if force_float32:
            args.fp16 = False
            args.bf16 = False
            os.environ['ACCELERATE_MIXED_PRECISION'] = 'no'
        elif (not use_bf16 and not use_fp16) and mixed_precision_dtype == 'float32':
            args.fp16 = float16
            args.bf16 = not float16
            os.environ['ACCELERATE_MIXED_PRECISION'] = 'fp16' if float16 else 'bf16'
        if getattr(args, 'eval_dataset', None) is not None and getattr(args, 'eval_strategy', 'no') == 'no':
            args.eval_strategy = 'steps'
            if getattr(args, 'eval_steps', None) is None: args.eval_steps = 0.1
        ga_steps = getattr(args, 'gradient_accumulation_steps', None)
        if ga_steps is not None and ga_steps > 1:
            from transformers import __version__ as transformers_version
            if Version(transformers_version) <= Version('4.45.2'):
                print('**** Unsloth: Please use our fixed gradient_accumulation_steps by updating transformers, TRL and Unsloth!\n'
                      '`pip install --upgrade --no-cache-dir --force-reinstall --no-deps unsloth transformers trl unsloth_zoo`')
        if getattr(args, 'eval_strategy', 'no') != 'no':
            eval_bsz = getattr(args, 'per_device_eval_batch_size', 8)
            if eval_bsz == 8 and args.per_device_train_batch_size < eval_bsz: args.per_device_eval_batch_size = args.per_device_train_batch_size
            if getattr(args, 'eval_accumulation_steps', None) is None and ga_steps is not None: args.eval_accumulation_steps = ga_steps
        fp16_full_eval = getattr(args, 'fp16_full_eval', False)
        bf16_full_eval = getattr(args, 'bf16_full_eval', False)
        if args.fp16 and bf16_full_eval: args.bf16_full_eval = False; args.fp16_full_eval = True
        if args.bf16 and fp16_full_eval: args.bf16_full_eval = True; args.fp16_full_eval = False
        if force_float32:
            args.bf16_full_eval = False
            args.fp16_full_eval = False
        elif os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32') == 'bfloat16':
            args.bf16_full_eval = True
            args.fp16_full_eval = False
        elif not bf16_full_eval and not fp16_full_eval:
            args.bf16_full_eval = args.bf16
            args.fp16_full_eval = args.fp16
        _output_logits = False
        if locals().get('compute_metrics', None) is not None: _output_logits = True
        if locals().get('preprocess_logits_for_metrics', None) is not None: _output_logits = True
        if _output_logits:
            os.environ['UNSLOTH_RETURN_LOGITS'] = '1'
        if 'max_seq_length' not in locals() and not hasattr(args, 'max_seq_length'):
            pass
        else:
            model_max_seq_length = getattr(model, 'max_seq_length', None)
            args_max_seq_length  = getattr(args,  'max_seq_length', None)
            if args_max_seq_length is None and model_max_seq_length is not None:
                max_seq_length = model.max_seq_length
                if hasattr(args, 'max_seq_length'): args.max_seq_length = max_seq_length
        if model is not None and hasattr(model, 'for_training'):
            model.for_training()
        if 'tokenizer' in locals() and hasattr(tokenizer, 'padding_side'): tokenizer.padding_side = 'right'
        if 'processing_class' in locals():
            if hasattr(processing_class, 'padding_side'): processing_class.padding_side = 'right'
            if hasattr(processing_class, 'tokenizer') and hasattr(processing_class.tokenizer, 'padding_side'): processing_class.tokenizer.padding_side = 'right'
        __tokenizer = processing_class if 'processing_class' in locals() else tokenizer
        from unsloth_zoo.vision_utils import UnslothVisionDataCollator
        if not isinstance(data_collator, UnslothVisionDataCollator):
            if isinstance(data_collator, DataCollatorForSeq2Seq) and 'labels' not in train_dataset.column_names:
                data_collator = DataCollatorForLanguageModeling(__tokenizer, mlm = False)
            elif isinstance(data_collator, DataCollatorForLanguageModeling) and 'labels' in train_dataset.column_names:
                data_collator = DataCollatorForSeq2Seq(__tokenizer)
        else:
            if hasattr(args, 'remove_unused_columns'): args.remove_unused_columns = False
            if hasattr(args, 'dataset_text_field'): args.dataset_text_field = ''
            if hasattr(args, 'dataset_kwargs'): args.dataset_kwargs = {'skip_prepare_dataset': True}
        if not isinstance(data_collator, UnslothVisionDataCollator):
            if not hasattr(__tokenizer, 'pad') and hasattr(__tokenizer, 'tokenizer'):
                if isinstance(data_collator, DataCollatorForSeq2Seq):
                    data_collator = DataCollatorForSeq2Seq(__tokenizer.tokenizer)
                else:
                    data_collator = DataCollatorForLanguageModeling(__tokenizer.tokenizer, mlm = False)
        other_metrics = []
        
        from unsloth_zoo.logging_utils import PatchRLStatistics
        PatchRLStatistics('ppo_trainer', other_metrics)
        
        super().__init__(
            args = args,
            processing_class = processing_class,
            model = model,
            ref_model = ref_model,
            reward_model = reward_model,
            train_dataset = train_dataset,
            value_model = value_model,
            data_collator = data_collator,
            eval_dataset = eval_dataset,
            callbacks = callbacks,
            peft_config = peft_config,**kwargs)
        if hasattr(self, 'neftune_hook_handle'):
            self.neftune_hook_handle.remove()
            if hasattr(self, 'neftune_hook_handle'): del self.neftune_hook_handle
        if getattr(args, 'neftune_noise_alpha', None) is not None:
            model.get_input_embeddings().neftune_noise_alpha = self.neftune_noise_alpha
        pass
        
pass