File size: 49,461 Bytes
d5eed08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
"""
2025.3.12
2025.3.14
4.48.3
0.15.2
__UNSLOTH_VERSIONING__
"""
from torch import Tensor
import torch
import torch.nn as nn
from torch.nn import functional as F
from trl.trainer.sft_trainer import (Any, AutoModelForCausalLM, AutoTokenizer, BaseImageProcessor, Callable, ConstantLengthDataset, DataCollator, DataCollatorForLanguageModeling, Dataset, EvalPrediction, FeatureExtractionMixin, IterableDataset, Optional, PeftConfig, PeftModel, PreTrainedModel, PreTrainedTokenizerBase, ProcessorMixin, SFTConfig, SFTTrainer, Trainer, TrainerCallback, TrainingArguments, Type, Union, dataclasses, defaultdict, deprecate_kwarg, generate_model_card, get_comet_experiment_url, get_peft_model, is_liger_kernel_available, is_peft_available, is_wandb_available, nn, os, pack_examples, peft, peft_module_casting_to_bf16, prepare_model_for_kbit_training, torch, transformers, version, wandb, warnings, Callable, ConstantLengthDataset, DataCollator, DataCollatorForLanguageModeling, Dataset, IterableDataset, Optional, Union, os, pack_examples, transformers, os)


import os
from typing import *
from dataclasses import dataclass, field
from packaging.version import Version
import torch
import numpy as np
from contextlib import nullcontext
from torch.nn import functional as F
from transformers import DataCollatorForSeq2Seq, DataCollatorForLanguageModeling

torch_compile_options = {
    "epilogue_fusion"   : True,
    "max_autotune"      : False,
    "shape_padding"     : True,
    "trace.enabled"     : False,
    "triton.cudagraphs" : False,
}

@torch.compile(dynamic = True, fullgraph = True, options = torch_compile_options,)
def selective_log_softmax(logits, index):
    logits = logits.to(torch.float32)
    selected_logits = torch.gather(logits, dim = -1, index = index.unsqueeze(-1)).squeeze(-1)
    # loop to reduce peak mem consumption
    # logsumexp_values = torch.stack([torch.logsumexp(lg, dim=-1) for lg in logits])
    logsumexp_values = torch.logsumexp(logits, dim = -1)
    per_token_logps = selected_logits - logsumexp_values  # log_softmax(x_i) = x_i - logsumexp(x)
    return per_token_logps
@dataclass
class UnslothSFTConfig(SFTConfig):
    """
    
    Configuration class for the [`SFTTrainer`].

    Only the parameters specific to SFT training are listed here. For details on other parameters, refer to the
    [`~transformers.TrainingArguments`] documentation.

    Using [`~transformers.HfArgumentParser`] we can turn this class into
    [argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the
    command line.

    Parameters:
        > Parameters that control the model

        model_init_kwargs (`dict[str, Any]` or `None`, *optional*, defaults to `None`):
            Keyword arguments for [`~transformers.AutoModelForCausalLM.from_pretrained`], used when the `model`
            argument of the [`SFTTrainer`] is provided as a string.
        use_liger (`bool`, *optional*, defaults to `False`):
            Monkey patch the model with Liger kernels to increase throughput and reduce memory usage.

        > Parameters that control the data preprocessing

        dataset_text_field (`str`, *optional*, defaults to `"text"`):
            Name of the column that contains text data in the dataset.
        dataset_kwargs (`dict[str, Any]` or `None`, *optional*, defaults to `None`):
            Dictionary of optional keyword arguments for the dataset preparation. The only supported key is
            `skip_prepare_dataset`.
        dataset_num_proc (`int` or `None`, *optional*, defaults to `None`):
            Number of processes to use for processing the dataset.
        max_seq_length (`int` or `None`, *optional*, defaults to `1024`):
            Maximum length of the tokenized sequence. Sequences longer than `max_seq_length` are truncated from the
            right.
            If `None`, no truncation is applied. When packing is enabled, this value sets the sequence length.
        packing (`bool`, *optional*, defaults to `False`):
            Whether to pack multiple sequences into a fixed-length format. Uses `max_seq_length` to define sequence
            length.
        eval_packing (`bool` or `None`, *optional*, defaults to `None`):
            Whether to pack the eval dataset. If `None`, uses the same value as `packing`.

        > Parameters that control the training

        learning_rate (`float`, *optional*, defaults to `2e-5`):
            Initial learning rate for [`AdamW`] optimizer. The default value replaces that of
            [`~transformers.TrainingArguments`].
    
    """
    vllm_sampling_params: Optional[Any] = field(
        default = None,
        metadata = {'help': 'vLLM SamplingParams'},
    )
    unsloth_num_chunks : Optional[int] = field(
        default = -1,
        metadata = {'help': 'Chunk size to reduce memory usage. -1 is most efficient.'},
    )
    def __init__(
        self,
        output_dir = None,
        overwrite_output_dir = None,
        do_train = False,
        do_eval = False,
        do_predict = False,
        eval_strategy = 'no',
        prediction_loss_only = False,
        per_device_train_batch_size = 4,
        per_device_eval_batch_size = 4,
        per_gpu_train_batch_size = None,
        per_gpu_eval_batch_size = None,
        gradient_accumulation_steps = 2,
        eval_accumulation_steps = 2,
        eval_delay = 0,
        torch_empty_cache_steps = 250,
        learning_rate = 5e-05,
        weight_decay = 0.01,
        adam_beta1 = 0.9,
        adam_beta2 = 0.999,
        adam_epsilon = 1e-08,
        max_grad_norm = 1.0,
        num_train_epochs = 3.0,
        max_steps = -1,
        lr_scheduler_type = 'linear',
        warmup_ratio = 0.1,
        warmup_steps = 0,
        log_level = 'passive',
        log_level_replica = 'warning',
        log_on_each_node = True,
        logging_dir = None,
        logging_strategy = 'steps',
        logging_first_step = False,
        logging_steps = 1,
        logging_nan_inf_filter = False,
        save_strategy = 'steps',
        save_steps = 500,
        save_total_limit = None,
        save_safetensors = True,
        save_on_each_node = False,
        save_only_model = False,
        restore_callback_states_from_checkpoint = False,
        no_cuda = False,
        use_cpu = False,
        use_mps_device = False,
        seed = 3407,
        data_seed = 3407,
        jit_mode_eval = False,
        use_ipex = False,
        bf16 = False,
        fp16 = False,
        fp16_opt_level = 'O1',
        half_precision_backend = 'auto',
        bf16_full_eval = False,
        fp16_full_eval = False,
        tf32 = None,
        local_rank = -1,
        ddp_backend = None,
        tpu_num_cores = None,
        tpu_metrics_debug = False,
        debug = '',
        dataloader_drop_last = False,
        eval_steps = None,
        dataloader_num_workers = 0,
        dataloader_prefetch_factor = None,
        past_index = -1,
        run_name = None,
        disable_tqdm = None,
        remove_unused_columns = True,
        label_names = None,
        load_best_model_at_end = False,
        metric_for_best_model = None,
        greater_is_better = None,
        ignore_data_skip = False,
        fsdp = '',
        fsdp_min_num_params = 0,
        fsdp_config = None,
        fsdp_transformer_layer_cls_to_wrap = None,
        accelerator_config = None,
        deepspeed = None,
        label_smoothing_factor = 0.0,
        optim = 'adamw_8bit',
        optim_args = None,
        adafactor = False,
        group_by_length = False,
        length_column_name = 'length',
        report_to = None,
        ddp_find_unused_parameters = None,
        ddp_bucket_cap_mb = None,
        ddp_broadcast_buffers = None,
        dataloader_pin_memory = True,
        dataloader_persistent_workers = False,
        skip_memory_metrics = True,
        use_legacy_prediction_loop = False,
        push_to_hub = False,
        resume_from_checkpoint = None,
        hub_model_id = None,
        hub_strategy = 'every_save',
        hub_token = None,
        hub_private_repo = None,
        hub_always_push = False,
        gradient_checkpointing = False,
        gradient_checkpointing_kwargs = None,
        include_inputs_for_metrics = False,
        eval_do_concat_batches = True,
        fp16_backend = 'auto',
        evaluation_strategy = None,
        push_to_hub_model_id = None,
        push_to_hub_organization = None,
        push_to_hub_token = None,
        mp_parameters = '',
        auto_find_batch_size = False,
        full_determinism = False,
        torchdynamo = None,
        ray_scope = 'last',
        ddp_timeout = 1800,
        torch_compile = False,
        torch_compile_backend = None,
        torch_compile_mode = None,
        dispatch_batches = None,
        split_batches = None,
        include_tokens_per_second = False,
        include_num_input_tokens_seen = False,
        neftune_noise_alpha = None,
        optim_target_modules = None,
        batch_eval_metrics = False,
        eval_on_start = False,
        use_liger_kernel = False,
        eval_use_gather_object = False,
        average_tokens_across_devices = False,
        model_init_kwargs = None,
        use_liger = False,
        dataset_text_field = 'text',
        dataset_kwargs = None,
        dataset_num_proc = None,
        max_seq_length = 1024,
        packing = False,
        eval_packing = None,
        dataset_batch_size = None,
        num_of_sequences = None,
        chars_per_token = None,
        vllm_sampling_params = None,
        unsloth_num_chunks = -1,
        **kwargs,
    ):
        if learning_rate < 1e-7: raise FloatingPointError(f'Unsloth: Your learning rate of `{learning_rate}` is too small and less than 1e-7! Consider increasing it, otherwise gradient updates will be close to 0!')
        if learning_rate > 1: raise OverflowError(f'Unsloth: Your learning rate of `{learning_rate}` is way too larger > 1! Consider decreasing it to 1e-1, otherwise gradient updates will explode!')
        if output_dir is None and save_strategy == 'steps' and save_steps == 500:
            output_dir = 'unsloth_training_checkpoints'
            save_strategy = 'no'
        if dataset_num_proc is None:
            from multiprocessing import cpu_count
            dataset_num_proc = cpu_count()
        
        super().__init__(
            output_dir = output_dir,
            overwrite_output_dir = overwrite_output_dir,
            do_train = do_train,
            do_eval = do_eval,
            do_predict = do_predict,
            eval_strategy = eval_strategy,
            prediction_loss_only = prediction_loss_only,
            per_device_train_batch_size = per_device_train_batch_size,
            per_device_eval_batch_size = per_device_eval_batch_size,
            per_gpu_train_batch_size = per_gpu_train_batch_size,
            per_gpu_eval_batch_size = per_gpu_eval_batch_size,
            gradient_accumulation_steps = gradient_accumulation_steps,
            eval_accumulation_steps = eval_accumulation_steps,
            eval_delay = eval_delay,
            torch_empty_cache_steps = torch_empty_cache_steps,
            learning_rate = learning_rate,
            weight_decay = weight_decay,
            adam_beta1 = adam_beta1,
            adam_beta2 = adam_beta2,
            adam_epsilon = adam_epsilon,
            max_grad_norm = max_grad_norm,
            num_train_epochs = num_train_epochs,
            max_steps = max_steps,
            lr_scheduler_type = lr_scheduler_type,
            warmup_ratio = warmup_ratio,
            warmup_steps = warmup_steps,
            log_level = log_level,
            log_level_replica = log_level_replica,
            log_on_each_node = log_on_each_node,
            logging_dir = logging_dir,
            logging_strategy = logging_strategy,
            logging_first_step = logging_first_step,
            logging_steps = logging_steps,
            logging_nan_inf_filter = logging_nan_inf_filter,
            save_strategy = save_strategy,
            save_steps = save_steps,
            save_total_limit = save_total_limit,
            save_safetensors = save_safetensors,
            save_on_each_node = save_on_each_node,
            save_only_model = save_only_model,
            restore_callback_states_from_checkpoint = restore_callback_states_from_checkpoint,
            no_cuda = no_cuda,
            use_cpu = use_cpu,
            use_mps_device = use_mps_device,
            seed = seed,
            data_seed = data_seed,
            jit_mode_eval = jit_mode_eval,
            use_ipex = use_ipex,
            bf16 = bf16,
            fp16 = fp16,
            fp16_opt_level = fp16_opt_level,
            half_precision_backend = half_precision_backend,
            bf16_full_eval = bf16_full_eval,
            fp16_full_eval = fp16_full_eval,
            tf32 = tf32,
            local_rank = local_rank,
            ddp_backend = ddp_backend,
            tpu_num_cores = tpu_num_cores,
            tpu_metrics_debug = tpu_metrics_debug,
            debug = debug,
            dataloader_drop_last = dataloader_drop_last,
            eval_steps = eval_steps,
            dataloader_num_workers = dataloader_num_workers,
            dataloader_prefetch_factor = dataloader_prefetch_factor,
            past_index = past_index,
            run_name = run_name,
            disable_tqdm = disable_tqdm,
            remove_unused_columns = remove_unused_columns,
            label_names = label_names,
            load_best_model_at_end = load_best_model_at_end,
            metric_for_best_model = metric_for_best_model,
            greater_is_better = greater_is_better,
            ignore_data_skip = ignore_data_skip,
            fsdp = fsdp,
            fsdp_min_num_params = fsdp_min_num_params,
            fsdp_config = fsdp_config,
            fsdp_transformer_layer_cls_to_wrap = fsdp_transformer_layer_cls_to_wrap,
            accelerator_config = accelerator_config,
            deepspeed = deepspeed,
            label_smoothing_factor = label_smoothing_factor,
            optim = optim,
            optim_args = optim_args,
            adafactor = adafactor,
            group_by_length = group_by_length,
            length_column_name = length_column_name,
            report_to = report_to,
            ddp_find_unused_parameters = ddp_find_unused_parameters,
            ddp_bucket_cap_mb = ddp_bucket_cap_mb,
            ddp_broadcast_buffers = ddp_broadcast_buffers,
            dataloader_pin_memory = dataloader_pin_memory,
            dataloader_persistent_workers = dataloader_persistent_workers,
            skip_memory_metrics = skip_memory_metrics,
            use_legacy_prediction_loop = use_legacy_prediction_loop,
            push_to_hub = push_to_hub,
            resume_from_checkpoint = resume_from_checkpoint,
            hub_model_id = hub_model_id,
            hub_strategy = hub_strategy,
            hub_token = hub_token,
            hub_private_repo = hub_private_repo,
            hub_always_push = hub_always_push,
            gradient_checkpointing = gradient_checkpointing,
            gradient_checkpointing_kwargs = gradient_checkpointing_kwargs,
            include_inputs_for_metrics = include_inputs_for_metrics,
            eval_do_concat_batches = eval_do_concat_batches,
            fp16_backend = fp16_backend,
            evaluation_strategy = evaluation_strategy,
            push_to_hub_model_id = push_to_hub_model_id,
            push_to_hub_organization = push_to_hub_organization,
            push_to_hub_token = push_to_hub_token,
            mp_parameters = mp_parameters,
            auto_find_batch_size = auto_find_batch_size,
            full_determinism = full_determinism,
            torchdynamo = torchdynamo,
            ray_scope = ray_scope,
            ddp_timeout = ddp_timeout,
            torch_compile = torch_compile,
            torch_compile_backend = torch_compile_backend,
            torch_compile_mode = torch_compile_mode,
            dispatch_batches = dispatch_batches,
            split_batches = split_batches,
            include_tokens_per_second = include_tokens_per_second,
            include_num_input_tokens_seen = include_num_input_tokens_seen,
            neftune_noise_alpha = neftune_noise_alpha,
            optim_target_modules = optim_target_modules,
            batch_eval_metrics = batch_eval_metrics,
            eval_on_start = eval_on_start,
            use_liger_kernel = use_liger_kernel,
            eval_use_gather_object = eval_use_gather_object,
            average_tokens_across_devices = average_tokens_across_devices,
            model_init_kwargs = model_init_kwargs,
            use_liger = use_liger,
            dataset_text_field = dataset_text_field,
            dataset_kwargs = dataset_kwargs,
            dataset_num_proc = dataset_num_proc,
            max_seq_length = max_seq_length,
            packing = packing,
            eval_packing = eval_packing,
            dataset_batch_size = dataset_batch_size,
            num_of_sequences = num_of_sequences,
            chars_per_token = chars_per_token,**kwargs)
        self.vllm_sampling_params = vllm_sampling_params
        self.unsloth_num_chunks = unsloth_num_chunks
pass

class _UnslothSFTTrainer(Trainer):
    """"""

    _tag_names = ["trl", "sft"]

    @deprecate_kwarg(
        "tokenizer", "0.16.0", "processing_class", warn_if_greater_or_equal_version=True, raise_if_both_names=True
    )
    def __init__(
        self,
        model: Union[str, nn.Module, PreTrainedModel],
        args: Optional[Union[SFTConfig, TrainingArguments]] = None,
        data_collator: Optional[DataCollator] = None,  # type: ignore
        train_dataset: Optional[Union[Dataset, IterableDataset]] = None,
        eval_dataset: Optional[Union[Dataset, dict[str, Dataset]]] = None,
        processing_class: Optional[
            Union[PreTrainedTokenizerBase, BaseImageProcessor, FeatureExtractionMixin, ProcessorMixin]
        ] = None,
        compute_loss_func: Optional[Callable] = None,
        compute_metrics: Optional[Callable[[EvalPrediction], dict]] = None,
        callbacks: Optional[list[TrainerCallback]] = None,
        optimizers: tuple[Optional[torch.optim.Optimizer], Optional[torch.optim.lr_scheduler.LambdaLR]] = (None, None),
        optimizer_cls_and_kwargs: Optional[tuple[Type[torch.optim.Optimizer], dict[str, Any]]] = None,
        preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None,
        peft_config: Optional["PeftConfig"] = None,
        formatting_func: Optional[Union[Callable[[dict], str], Callable[[dict], list[str]]]] = None,
    ):
        # Args
        if args is None:
            model_name = model if isinstance(model, str) else model.config._name_or_path
            model_name = model_name.split("/")[-1]
            args = SFTConfig(f"{model_name}-SFT")
        elif isinstance(args, TrainingArguments) and not isinstance(args, SFTConfig):
            dict_args = args.to_dict()
            dict_args["hub_token"] = args.hub_token  # to_dict hides the hub_token
            dict_args.pop("push_to_hub_token")
            args = SFTConfig(**dict_args)

        # Model
        if args.model_init_kwargs is not None and not isinstance(model, str):
            warnings.warn(
                "You passed model_init_kwargs to the `SFTConfig`, but your model is already instantiated. "
                "The `model_init_kwargs` will be ignored."
            )
        if isinstance(model, str):
            model = self._create_model_from_path(model, args)

        # PEFT configuration and model wrapping
        if False:
            model = self._prepare_peft_model(model, peft_config, args)

        # Handle the tokenizer
        if processing_class is None:
            processing_class = AutoTokenizer.from_pretrained(model.config._name_or_path)
            if processing_class.pad_token is None:
                processing_class.pad_token = processing_class.eos_token  # required for padding when collating data

        # Dataset
        preprocess_dataset = args.dataset_kwargs is None or not args.dataset_kwargs.get("skip_prepare_dataset", False)
        if preprocess_dataset:
            train_dataset = self._prepare_dataset(
                train_dataset, processing_class, args, args.packing, formatting_func, "train"
            )
            if eval_dataset is not None:
                packing = args.packing if args.eval_packing is None else args.eval_packing
                if isinstance(eval_dataset, dict):
                    eval_dataset = {
                        key: self._prepare_dataset(dataset, processing_class, args, packing, formatting_func, key)
                        for key, dataset in eval_dataset.items()
                    }
                else:
                    eval_dataset = self._prepare_dataset(
                        eval_dataset, processing_class, args, packing, formatting_func, "eval"
                    )

        # Data collator
        if data_collator is None:
            data_collator = DataCollatorForLanguageModeling(tokenizer=processing_class, mlm=False)

        # Initialize the metrics
        self._metrics = defaultdict(list)

        # Initialize the Trainer. Parent class will handle:
        # - DeepSpeed configuration (through create_accelerator_and_postprocess)
        # - FSDP setup
        # - Distributed training setup
        # - Optimizer and scheduler creation
        # Some arguments are only available for transformers>=4.47.0. Can be removed when the min version is bumped.
        super_init_kwargs = {}
        if version.parse(transformers.__version__) >= version.parse("4.47.0.dev0"):
            super_init_kwargs["optimizer_cls_and_kwargs"] = optimizer_cls_and_kwargs
        else:
            if optimizer_cls_and_kwargs is not None:
                warnings.warn(
                    "The `optimizer_cls_and_kwargs` argument is only available for `transformers>=4.47.0`. "
                    "The default optimizer will be used. "
                    "Remove the `optimizer_cls_and_kwargs` or upgrade to `transformers>=4.47.0`."
                )
        super().__init__(
            model=model,
            args=args,
            data_collator=data_collator,
            train_dataset=train_dataset,
            eval_dataset=eval_dataset,
            processing_class=processing_class,
            compute_loss_func=compute_loss_func,
            compute_metrics=compute_metrics,
            callbacks=callbacks,
            optimizers=optimizers,
            preprocess_logits_for_metrics=preprocess_logits_for_metrics,
            **super_init_kwargs,
        )

        # Add tags for models that have been loaded with the correct transformers version
        if hasattr(self.model, "add_model_tags"):
            self.model.add_model_tags(self._tag_names)

    def _create_model_from_path(self, model_path: str, args: SFTConfig) -> PreTrainedModel:
        """Creates a model from a path or model identifier."""
        model_init_kwargs = args.model_init_kwargs or {}
        # Handle torch dtype
        torch_dtype = model_init_kwargs.get("torch_dtype")
        if isinstance(torch_dtype, torch.dtype) or torch_dtype == "auto" or torch_dtype is None:
            pass  # torch_dtype is already a torch.dtype or "auto" or None
        elif isinstance(torch_dtype, str):  # it's a str, but not "auto"
            torch_dtype = getattr(torch, torch_dtype)
            model_init_kwargs["torch_dtype"] = torch_dtype
        else:
            raise ValueError(
                "Invalid `torch_dtype` passed to `SFTConfig`. Expected either 'auto' or a string representing "
                f"a `torch.dtype` (e.g., 'float32'), but got {torch_dtype}."
            )
        # Disable caching if gradient checkpointing is enabled (not supported)
        if args.gradient_checkpointing:
            model_init_kwargs["use_cache"] = False

        # Create model
        if args.use_liger:
            if not is_liger_kernel_available():
                raise ImportError("Please install Liger-kernel for use_liger=True")
            model = AutoLigerKernelForCausalLM.from_pretrained(model_path, **model_init_kwargs)
        else:
            model = AutoModelForCausalLM.from_pretrained(model_path, **model_init_kwargs)
        return model

    def _prepare_peft_model(self, model: PreTrainedModel, peft_config: Any, args: SFTConfig) -> PreTrainedModel:
        """Prepares a model for PEFT training."""
        if not is_peft_available():
            raise ImportError("To use PeftModel, you need to install the `peft` library.")

        if not isinstance(peft_config, PeftConfig):
            raise ValueError(
                f"Expected PeftConfig object but got {type(peft_config)}. If you want to use the PeftModel, you need "
                "to pass a PeftConfig object to the SFTTrainer."
            )

        if isinstance(model, PeftModel):
            return model

        # Handle quantized models (QLoRA)
        is_qlora = getattr(model, "is_loaded_in_4bit", False) or getattr(model, "is_loaded_in_8bit", False)

        is_sharded_qlora = False
        if getattr(model, "is_loaded_in_4bit", False):
            # Check if model is sharded (FSDP/DS-Zero3)
            for _, param in model.named_parameters():
                if param.__class__.__name__ == "Params4bit":
                    is_sharded_qlora = param.data.device.type in {"cpu", "meta"}
                    break

        # Prepare model for kbit training if needed
        if is_qlora and not is_sharded_qlora:
            model = self._prepare_model_for_kbit_training(model, args)
            # Disable gradient checkpointing as it's handled by prepare_model_for_kbit_training
            args = dataclasses.replace(args, gradient_checkpointing=False)
        elif args.gradient_checkpointing:
            model = self._enable_gradient_checkpointing(model, args)

        # Create PEFT model
        if (
            version.parse(peft.__version__) >= version.parse("0.12")  # autocast_adapter_dtype introduced in 0.12
            and getattr(model, "is_loaded_in_4bit", False)
            and is_sharded_qlora
        ):
            model = get_peft_model(model, peft_config, autocast_adapter_dtype=False)
        else:
            model = get_peft_model(model, peft_config)

        # Handle bf16 casting for 4-bit models
        if args.bf16 and getattr(model, "is_loaded_in_4bit", False) and not is_sharded_qlora:
            peft_module_casting_to_bf16(model)

        return model

    def _prepare_model_for_kbit_training(self, model: PreTrainedModel, args: SFTConfig) -> PreTrainedModel:
        """Prepares a quantized model for kbit training."""
        prepare_model_kwargs = {
            "use_gradient_checkpointing": args.gradient_checkpointing,
            "gradient_checkpointing_kwargs": args.gradient_checkpointing_kwargs or {},
        }

        return prepare_model_for_kbit_training(model, **prepare_model_kwargs)

    def _enable_gradient_checkpointing(self, model: PreTrainedModel, args: SFTConfig) -> PreTrainedModel:
        """Enables gradient checkpointing for the model."""
        gradient_checkpointing_kwargs = args.gradient_checkpointing_kwargs or {}
        use_reentrant = (
            "use_reentrant" not in gradient_checkpointing_kwargs or gradient_checkpointing_kwargs["use_reentrant"]
        )

        if use_reentrant:
            if hasattr(model, "enable_input_require_grads"):
                model.enable_input_require_grads()
            else:

                def make_inputs_require_grad(module, input, output):
                    output.requires_grad_(True)

                model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)

        return model

    def _prepare_dataset(
        self,
        dataset: Union[Dataset, IterableDataset],
        processing_class,
        args,
        packing: bool,
        formatting_func: Optional[Callable[[dict], str]],
        dataset_name: str,
    ) -> Union[Dataset, IterableDataset]:
        # All Unsloth Zoo code licensed under LGPLv3
        if isinstance(dataset, ConstantLengthDataset): return dataset
    
        map_kwargs = {}
        use_desc = isinstance(dataset, Dataset)
        is_vlm = hasattr(processing_class, "tokenizer")
        tokenizer = processing_class
        if is_vlm: tokenizer = processing_class.tokenizer
    
        # Get max length
        max_seq_length = getattr(args, "max_length", 0)
        if max_seq_length == 0: max_seq_length = getattr(args, "max_seq_length", 0)
        if max_seq_length == 0: max_seq_length = getattr(self, "max_seq_length", 0)
        if max_seq_length == 0: max_seq_length = getattr(self, "max_seq", 0)
        dataset_text_field = getattr(args, "dataset_text_field", "text")
        do_truncation = max_seq_length != 0
        do_formatting_func = False
        do_tokenize = True
    
        # Get correct column names
        column_names = set(next(iter(dataset)).keys())
        used_column_names = ["input_ids"]
        if "attention_mask" in column_names:
            used_column_names.append("attention_mask")
    
        # Check if already tokenized so skip
        from transformers import DataCollatorForSeq2Seq, DataCollatorForLanguageModeling
        if "labels" in column_names:
            # Most likely forgot data collator!
            if is_vlm and not hasattr(tokenizer, "pad"):
                # Check if processing_class has a .pad, if not, use tokenizer.tokenizer
                raise RuntimeError(f"Unsloth: {processing_class.__class__} does not have .pad!")
            self.data_collator = DataCollatorForSeq2Seq(tokenizer)
            used_column_names.append("labels")
            do_tokenize = False
        elif "input_ids" in column_names:
            # Skip dataset prep, and set data collator
            if is_vlm and not hasattr(tokenizer, "pad"):
                # Check if processing_class has a .pad, if not, use tokenizer.tokenizer
                raise RuntimeError(f"Unsloth: {processing_class.__class__} does not have .pad!")
            self.data_collator = DataCollatorForLanguageModeling(tokenizer, mlm = False)
            do_tokenize = False
        elif dataset_text_field not in column_names:
            do_formatting_func = True
            if formatting_func is None:
                raise RuntimeError("Unsloth: You must specify a `formatting_func`")
        pass
    
        if do_tokenize:
            # Check double BOS tokens
            if do_formatting_func:
                test_text = formatting_func(dataset[0])
                if not isinstance(test_text, list):
                    raise ValueError(
                        "Unsloth: The `formatting_func` should return a list of processed strings."
                    )
                test_text = test_text[0]
            else:
                test_text = dataset[0][dataset_text_field]
    
            # Get chat template
            chat_template = getattr(processing_class, 'chat_template', '')
            if chat_template == '' and is_vlm:
                chat_template = getattr(tokenizer, 'chat_template', '')
            if chat_template is None:
                chat_template = ''
    
            # Get bos_token
            add_special_tokens = True
            bos_token_1 = getattr(processing_class, 'bos_token', None)
            bos_token_2 = getattr(tokenizer, 'bos_token', None)
            bos_token = bos_token_1 or bos_token_2
    
            if bos_token is not None:
                if test_text.startswith(bos_token) or bos_token in chat_template:
                    add_special_tokens = False
                    print("Unsloth: We found double BOS tokens - we shall remove one automatically.")
            pass
    
            # Create tokenize function
            def _tokenize(example):
                return tokenizer(
                    example[dataset_text_field] if not do_formatting_func else formatting_func(example),
                    truncation = do_truncation,
                    max_length = max_seq_length,
                    return_token_type_ids = False,
                    add_special_tokens = add_special_tokens,
                )
            pass
    
            map_kwargs["num_proc"] = getattr(args, "dataset_num_proc", 2)
            if use_desc: map_kwargs["desc"] = f'Unsloth: Tokenizing ["{dataset_text_field}"]'
            dataset = dataset.map(_tokenize, batched = True, **map_kwargs)
    
            # If VLM, switch data collator since .pad is needed!
            if is_vlm and not hasattr(processing_class, "pad"):
                data_collator = DataCollatorForLanguageModeling(tokenizer, mlm = False)
                self.data_collator = data_collator
            pass
        pass
        if packing:
            print("Unsloth: Hugging Face's packing is currently buggy - we're disabling it for now!")
            return dataset
    
            if max_seq_length == 0:
                raise ValueError("When packing is enabled, `max_seq_length` can't be `None`.")
    
            if use_desc: map_kwargs["desc"] = f"Unsloth: Packing {dataset_name} dataset"
            dataset = dataset.select_columns(used_column_names).map(
                pack_examples,
                batched = True,
                fn_kwargs = {"seq_length": max_seq_length,},
                **map_kwargs,
            )
        pass
        return dataset
    
    def compute_loss(self, model, inputs, return_outputs = False, num_items_in_batch = None):
        outputs = super().compute_loss(
            model,
            inputs,
            return_outputs = return_outputs,
            num_items_in_batch = num_items_in_batch,
        )
        return outputs

    def log(self, logs: dict[str, float], start_time: Optional[float] = None) -> None:
        metrics = {key: sum(val) / len(val) for key, val in self._metrics.items()}  # average the metrics

        # This method can be called both in training and evaluation. When called in evaluation, the keys in `logs`
        # start with "eval_". We need to add the prefix "eval_" to the keys in `metrics` to match the format.
        if next(iter(logs.keys())).startswith("eval_"):
            metrics = {f"eval_{key}": val for key, val in metrics.items()}

        logs = {**logs, **metrics}
        if version.parse(transformers.__version__) >= version.parse("4.47.0.dev0"):
            super().log(logs, start_time)
        else:  # transformers<=4.46
            super().log(logs)
        self._metrics.clear()

    def create_model_card(
        self,
        model_name: Optional[str] = None,
        dataset_name: Optional[str] = None,
        tags: Union[str, list[str], None] = None,
    ):
        """
        Creates a draft of a model card using the information available to the `Trainer`.

        Args:
            model_name (`str` or `None`, *optional*, defaults to `None`):
                Name of the model.
            dataset_name (`str` or `None`, *optional*, defaults to `None`):
                Name of the dataset used for training.
            tags (`str`, `list[str]` or `None`, *optional*, defaults to `None`):
                Tags to be associated with the model card.
        """
        if not self.is_world_process_zero():
            return

        if hasattr(self.model.config, "_name_or_path") and not os.path.isdir(self.model.config._name_or_path):
            base_model = self.model.config._name_or_path
        else:
            base_model = None

        tags = tags or []
        if isinstance(tags, str):
            tags = [tags]

        if hasattr(self.model.config, "unsloth_version"):
            tags.append("unsloth")

        model_card = generate_model_card(
            base_model=base_model,
            model_name=model_name,
            hub_model_id=self.hub_model_id,
            dataset_name=dataset_name,
            tags=tags,
            wandb_url=wandb.run.get_url() if is_wandb_available() and wandb.run is not None else None,
            comet_url=get_comet_experiment_url(),
            trainer_name="SFT",
        )

        model_card.save(os.path.join(self.args.output_dir, "README.md"))
class UnslothSFTTrainer(_UnslothSFTTrainer):
    """
    
    Trainer for Supervised Fine-Tuning (SFT) method.

    This class is a wrapper around the [`transformers.Trainer`] class and inherits all of its attributes and methods.

    Example:

    ```python
    from datasets import load_dataset
    from trl import SFTTrainer

    dataset = load_dataset("roneneldan/TinyStories", split="train[:1%]")

    trainer = SFTTrainer(model="Qwen/Qwen2-0.5B-Instruct", train_dataset=dataset)
    trainer.train()
    ```

    Args:
        model (`Union[str, PreTrainedModel]`):
            Model to be trained. Can be either:

            - A string, being the *model id* of a pretrained model hosted inside a model repo on huggingface.co, or
              a path to a *directory* containing model weights saved using
              [`~transformers.PreTrainedModel.save_pretrained`], e.g., `'./my_model_directory/'`. The model is
              loaded using [`~transformers.AutoModelForCausalLM.from_pretrained`] with the keywork arguments
              in `args.model_init_kwargs`.
            - A [`~transformers.PreTrainedModel`] object. Only causal language models are supported.
        args ([`SFTConfig`], *optional*, defaults to `None`):
            Configuration for this trainer. If `None`, a default configuration is used.
        data_collator (`DataCollator`, *optional*):
            Function to use to form a batch from a list of elements of the prcessed `train_dataset` or `eval_dataset`.
            Will default to [`~transformers.default_data_collator`] if no `processing_class` is provided, an instance
            of [`~transformers.DataCollatorWithPadding`] otherwise if the processing_class is a feature extractor or
            tokenizer.
        train_dataset ([`~datasets.Dataset`] or [`~datasets.IterableDataset`]):
            Dataset to use for training. SFT supports both [language modeling](#language-modeling) type and
            [prompt-completion](#prompt-completion) type. The format of the samples can be either:

            - [Standard](dataset_formats#standard): Each sample contains plain text.
            - [Conversational](dataset_formats#conversational): Each sample contains structured messages (e.g., role
              and content).

            The trainer also supports processed datasets (tokenized) as long as they contain an `input_ids` field.
        eval_dataset ([`~datasets.Dataset`], [`~datasets.IterableDataset`] or `dict[str, Union[Dataset, IterableDataset]]`):
            Dataset to use for evaluation. It must meet the same requirements as `train_dataset`.
        processing_class ([`~transformers.PreTrainedTokenizerBase`], *optional*, defaults to `None`):
            Processing class used to process the data. If `None`, the processing class is loaded from the model's name
            with [`~transformers.AutoTokenizer.from_pretrained`].
        callbacks (list of [`~transformers.TrainerCallback`], *optional*, defaults to `None`):
            List of callbacks to customize the training loop. Will add those to the list of default callbacks
            detailed in [here](https://huggingface.co/docs/transformers/main_classes/callback).

            If you want to remove one of the default callbacks used, use the [`~transformers.Trainer.remove_callback`]
            method.
        optimizers (`tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR]`, *optional*, defaults to `(None, None)`):
            A tuple containing the optimizer and the scheduler to use. Will default to an instance of [`AdamW`] on your
            model and a scheduler given by [`get_linear_schedule_with_warmup`] controlled by `args`.
        optimizer_cls_and_kwargs (`Tuple[Type[torch.optim.Optimizer], Dict[str, Any]]`, *optional*, defaults to `None`):
            A tuple containing the optimizer class and keyword arguments to use.
            Overrides `optim` and `optim_args` in `args`. Incompatible with the `optimizers` argument.

            Unlike `optimizers`, this argument avoids the need to place model parameters on the correct devices before initializing the Trainer.
        preprocess_logits_for_metrics (`Callable[[torch.Tensor, torch.Tensor], torch.Tensor]`, *optional*, defaults to `None`):
            A function that preprocess the logits right before caching them at each evaluation step. Must take two
            tensors, the logits and the labels, and return the logits once processed as desired. The modifications made
            by this function will be reflected in the predictions received by `compute_metrics`.

            Note that the labels (second parameter) will be `None` if the dataset does not have them.
        peft_config ([`~peft.PeftConfig`], *optional*, defaults to `None`):
            PEFT configuration used to wrap the model. If `None`, the model is not wrapped.
        formatting_func (`Optional[Callable]`):
            Formatting function applied to the dataset before tokenization.
    
    """
    def __init__(
        self,
        model,
        args = None,
        data_collator = None,
        train_dataset = None,
        eval_dataset = None,
        processing_class = None,
        compute_loss_func = None,
        compute_metrics = None,
        callbacks = None,
        optimizer_cls_and_kwargs = None,
        preprocess_logits_for_metrics = None,
        peft_config = None,
        formatting_func = None,
        **kwargs
    ):
        if args is None: args = UnslothSFTConfig()
        use_bf16 = getattr(args, 'bf16', False)
        use_fp16 = getattr(args, 'fp16', False)
        force_float32 = False
        if os.environ.get('UNSLOTH_FORCE_FLOAT32', '0') == '1':
            print('Unsloth: Switching to float32 training since model cannot work with float16')
            force_float32 = True
        mixed_precision_dtype = os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32')
        dtype = getattr(model.config, 'torch_dtype', None)
        if dtype is None: dtype = model.get_input_embeddings().dtype
        from unsloth_zoo.utils import _get_dtype
        dtype = _get_dtype(dtype)
        float16 = dtype == torch.float16
        if not force_float32 and (float16 and use_bf16): raise TypeError('Unsloth: Model is in float16 precision but you want to use bfloat16 precision. Set fp16 to `True` and bf16 to `False`')
        if not force_float32 and (not float16 and use_fp16): raise TypeError('Unsloth: Model is in bfloat16 precision but you want to use float16 precision. Set fp16 to `False` and bf16 to `True`')
        if force_float32:
            args.fp16 = False
            args.bf16 = False
            os.environ['ACCELERATE_MIXED_PRECISION'] = 'no'
        elif (not use_bf16 and not use_fp16) and mixed_precision_dtype == 'float32':
            args.fp16 = float16
            args.bf16 = not float16
            os.environ['ACCELERATE_MIXED_PRECISION'] = 'fp16' if float16 else 'bf16'
        if getattr(args, 'eval_dataset', None) is not None and getattr(args, 'eval_strategy', 'no') == 'no':
            args.eval_strategy = 'steps'
            if getattr(args, 'eval_steps', None) is None: args.eval_steps = 0.1
        ga_steps = getattr(args, 'gradient_accumulation_steps', None)
        if ga_steps is not None and ga_steps > 1:
            from transformers import __version__ as transformers_version
            if Version(transformers_version) <= Version('4.45.2'):
                print('**** Unsloth: Please use our fixed gradient_accumulation_steps by updating transformers, TRL and Unsloth!\n'
                      '`pip install --upgrade --no-cache-dir --force-reinstall --no-deps unsloth transformers trl unsloth_zoo`')
        if getattr(args, 'eval_strategy', 'no') != 'no':
            eval_bsz = getattr(args, 'per_device_eval_batch_size', 8)
            if eval_bsz == 8 and args.per_device_train_batch_size < eval_bsz: args.per_device_eval_batch_size = args.per_device_train_batch_size
            if getattr(args, 'eval_accumulation_steps', None) is None and ga_steps is not None: args.eval_accumulation_steps = ga_steps
        fp16_full_eval = getattr(args, 'fp16_full_eval', False)
        bf16_full_eval = getattr(args, 'bf16_full_eval', False)
        if args.fp16 and bf16_full_eval: args.bf16_full_eval = False; args.fp16_full_eval = True
        if args.bf16 and fp16_full_eval: args.bf16_full_eval = True; args.fp16_full_eval = False
        if force_float32:
            args.bf16_full_eval = False
            args.fp16_full_eval = False
        elif os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32') == 'bfloat16':
            args.bf16_full_eval = True
            args.fp16_full_eval = False
        elif not bf16_full_eval and not fp16_full_eval:
            args.bf16_full_eval = args.bf16
            args.fp16_full_eval = args.fp16
        _output_logits = False
        if locals().get('compute_metrics', None) is not None: _output_logits = True
        if locals().get('preprocess_logits_for_metrics', None) is not None: _output_logits = True
        if _output_logits:
            os.environ['UNSLOTH_RETURN_LOGITS'] = '1'
        if 'max_seq_length' not in locals() and not hasattr(args, 'max_seq_length'):
            pass
        else:
            model_max_seq_length = getattr(model, 'max_seq_length', None)
            args_max_seq_length  = getattr(args,  'max_seq_length', None)
            if args_max_seq_length is None and model_max_seq_length is not None:
                max_seq_length = model.max_seq_length
                if hasattr(args, 'max_seq_length'): args.max_seq_length = max_seq_length
        if model is not None and hasattr(model, 'for_training'):
            model.for_training()
        if 'tokenizer' in locals() and hasattr(tokenizer, 'padding_side'): tokenizer.padding_side = 'right'
        if 'processing_class' in locals():
            if hasattr(processing_class, 'padding_side'): processing_class.padding_side = 'right'
            if hasattr(processing_class, 'tokenizer') and hasattr(processing_class.tokenizer, 'padding_side'): processing_class.tokenizer.padding_side = 'right'
        __tokenizer = processing_class if 'processing_class' in locals() else tokenizer
        from unsloth_zoo.vision_utils import UnslothVisionDataCollator
        if not isinstance(data_collator, UnslothVisionDataCollator):
            if isinstance(data_collator, DataCollatorForSeq2Seq) and 'labels' not in train_dataset.column_names:
                data_collator = DataCollatorForLanguageModeling(__tokenizer, mlm = False)
            elif isinstance(data_collator, DataCollatorForLanguageModeling) and 'labels' in train_dataset.column_names:
                data_collator = DataCollatorForSeq2Seq(__tokenizer)
        else:
            if hasattr(args, 'remove_unused_columns'): args.remove_unused_columns = False
            if hasattr(args, 'dataset_text_field'): args.dataset_text_field = ''
            if hasattr(args, 'dataset_kwargs'): args.dataset_kwargs = {'skip_prepare_dataset': True}
        if not isinstance(data_collator, UnslothVisionDataCollator):
            if not hasattr(__tokenizer, 'pad') and hasattr(__tokenizer, 'tokenizer'):
                if isinstance(data_collator, DataCollatorForSeq2Seq):
                    data_collator = DataCollatorForSeq2Seq(__tokenizer.tokenizer)
                else:
                    data_collator = DataCollatorForLanguageModeling(__tokenizer.tokenizer, mlm = False)
        other_metrics = []
        
        from unsloth_zoo.logging_utils import PatchRLStatistics
        PatchRLStatistics('sft_trainer', other_metrics)
        IGNORED_TOKENIZER_NAMES = os.environ.get('UNSLOTH_IGNORED_TOKENIZER_NAMES', '').split('\n')
        from unsloth_zoo.tokenizer_utils import fix_untrained_tokens
        from unsloth_zoo.training_utils  import fix_zero_training_loss
        if 'tokenizer' not in locals(): tokenizer = processing_class
        fix_untrained_tokens(model, tokenizer, train_dataset, IGNORED_TOKENIZER_NAMES, eps = 1e-16)
        fix_zero_training_loss(model, tokenizer, train_dataset)
        
        super().__init__(
            model = model,
            args = args,
            data_collator = data_collator,
            train_dataset = train_dataset,
            eval_dataset = eval_dataset,
            processing_class = processing_class,
            compute_loss_func = compute_loss_func,
            compute_metrics = compute_metrics,
            callbacks = callbacks,
            optimizer_cls_and_kwargs = optimizer_cls_and_kwargs,
            preprocess_logits_for_metrics = preprocess_logits_for_metrics,
            peft_config = peft_config,
            formatting_func = formatting_func,**kwargs)
        if hasattr(self, 'neftune_hook_handle'):
            self.neftune_hook_handle.remove()
            if hasattr(self, 'neftune_hook_handle'): del self.neftune_hook_handle
        if getattr(args, 'neftune_noise_alpha', None) is not None:
            model.get_input_embeddings().neftune_noise_alpha = self.neftune_noise_alpha
        pass
        
pass