|
""" |
|
2025.3.12 |
|
2025.3.14 |
|
4.48.3 |
|
0.15.2 |
|
__UNSLOTH_VERSIONING__ |
|
""" |
|
from torch import Tensor |
|
import torch |
|
import torch.nn as nn |
|
from torch.nn import functional as F |
|
from trl.trainer.online_dpo_trainer import (Any, BaseImageProcessor, BasePairwiseJudge, Callable, DPODataCollatorWithPadding, DataCollator, DataLoader, Dataset, EvalPrediction, F, FeatureExtractionMixin, GenerationConfig, IterableDataset, OnlineDPOConfig, OnlineDPOTrainer, OptimizerNames, Optional, PREFIX_CHECKPOINT_DIR, PeftModel, PreTrainedModel, PreTrainedTokenizerBase, ProcessorMixin, SIMPLE_CHAT_TEMPLATE, Trainer, TrainerCallback, Union, apply_chat_template, create_reference_model, datasets, disable_dropout_in_model, empty_cache, generate_model_card, get_comet_experiment_url, get_reward, is_conversational, is_peft_available, is_wandb_available, jinja2, logging, maybe_apply_chat_template, nn, np, os, prepare_deepspeed, seed_worker, textwrap, torch, transformers, truncate_right, unwrap_model_for_generation, version, wandb, warnings, wraps, F, is_conversational, os, torch) |
|
|
|
|
|
import os |
|
from typing import * |
|
from dataclasses import dataclass, field |
|
from packaging.version import Version |
|
import torch |
|
import numpy as np |
|
from contextlib import nullcontext |
|
from torch.nn import functional as F |
|
from transformers import DataCollatorForSeq2Seq, DataCollatorForLanguageModeling |
|
|
|
torch_compile_options = { |
|
"epilogue_fusion" : True, |
|
"max_autotune" : False, |
|
"shape_padding" : True, |
|
"trace.enabled" : False, |
|
"triton.cudagraphs" : False, |
|
} |
|
|
|
@torch.compile(dynamic = True, fullgraph = True, options = torch_compile_options,) |
|
def selective_log_softmax(logits, index): |
|
logits = logits.to(torch.float32) |
|
selected_logits = torch.gather(logits, dim = -1, index = index.unsqueeze(-1)).squeeze(-1) |
|
|
|
|
|
logsumexp_values = torch.logsumexp(logits, dim = -1) |
|
per_token_logps = selected_logits - logsumexp_values |
|
return per_token_logps |
|
def vLLMSamplingParams(**kwargs): |
|
from vllm import SamplingParams |
|
sampling_params = SamplingParams(**kwargs) |
|
sampling_params._set_kwargs = kwargs |
|
return sampling_params |
|
@dataclass |
|
class UnslothOnlineDPOConfig(OnlineDPOConfig): |
|
""" |
|
|
|
Configuration class for the [`OnlineDPOTrainer`]. |
|
|
|
Using [`~transformers.HfArgumentParser`] we can turn this class into |
|
[argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the |
|
command line. |
|
|
|
Parameters: |
|
learning_rate (`float`, *optional*, defaults to `5e-7`): |
|
Initial learning rate for [`AdamW`] optimizer. The default value replaces that of |
|
[`~transformers.TrainingArguments`]. |
|
reward_model_path (`str` or `None`, *optional*, defaults to `None`): |
|
Path to the reward model. Either `judge` or `reward_model_path` must be set, but not both. |
|
judge (`str` or `None`, *optional*, defaults to `None`): |
|
Name of the judge to use. Either `judge` or `reward_model_path` must be set, but not both. |
|
max_new_tokens (`int`, *optional*, defaults to `64`): |
|
Maximum number of tokens to generate per completion. |
|
max_length (`int`, *optional*, defaults to `256`): |
|
Maximum total length of the sequence (prompt + completion) used to compute log probabilities. If the |
|
sequence exceeds this limit, the leftmost tokens will be truncated to preserve as much of the completion as |
|
possible. |
|
temperature (`float`, *optional*, defaults to `0.9`): |
|
Temperature for sampling. The higher the temperature, the more random the completions. |
|
missing_eos_penalty (`float` or `None`, *optional*, defaults to `None`): |
|
Penalty applied to the score when the model fails to generate an EOS token. This is useful to encourage |
|
to generate completions shorter than the maximum length (`max_new_tokens`). The penalty must be a positive |
|
value. |
|
beta (`float` or `list[float]`, *optional*, defaults to `0.1`): |
|
Parameter controlling the deviation from the reference model. Higher β means less deviation from the |
|
reference model. For the IPO loss (`loss_type="ipo"`), β is the regularization parameter denoted by τ in |
|
the [paper](https://huggingface.co/papers/2310.12036). If a list of floats is provided then the β is |
|
selected for each new epoch and the last β is used for the rest of the epochs. |
|
loss_type (`str`, *optional*, defaults to `"sigmoid"`): |
|
Type of loss to use. Possible values are: |
|
|
|
- `"sigmoid"`: sigmoid loss from the original [DPO](https://huggingface.co/papers/2305.18290) paper. |
|
- `"ipo"`: IPO loss from the [IPO](https://huggingface.co/papers/2310.12036) paper. |
|
|
|
dataset_num_proc (`int` or `None`, *optional*, defaults to `None`): |
|
Number of processes to use for processing the dataset. |
|
disable_dropout (`bool`, *optional*, defaults to `True`): |
|
Whether to disable dropout in the model and reference model. |
|
use_vllm (`bool`, *optional*, defaults to `False`): |
|
Whether to use vLLM for generating completions. Requires vLLM to be installed (`pip install vllm`). |
|
ds3_gather_for_generation (`bool`, *optional*, defaults to `True`): |
|
This setting applies to DeepSpeed ZeRO-3. If enabled, the policy model weights are gathered for generation, |
|
improving generation speed. However, disabling this option allows training models that exceed the VRAM |
|
capacity of a single GPU, albeit at the cost of slower generation. |
|
|
|
""" |
|
vllm_sampling_params: Optional[Any] = field( |
|
default = None, |
|
metadata = {'help': 'vLLM SamplingParams'}, |
|
) |
|
unsloth_num_chunks : Optional[int] = field( |
|
default = -1, |
|
metadata = {'help': 'Chunk size to reduce memory usage. -1 is most efficient.'}, |
|
) |
|
def __init__( |
|
self, |
|
output_dir = None, |
|
overwrite_output_dir = None, |
|
do_train = False, |
|
do_eval = False, |
|
do_predict = False, |
|
eval_strategy = 'no', |
|
prediction_loss_only = False, |
|
per_device_train_batch_size = 4, |
|
per_device_eval_batch_size = 4, |
|
per_gpu_train_batch_size = None, |
|
per_gpu_eval_batch_size = None, |
|
gradient_accumulation_steps = 2, |
|
eval_accumulation_steps = 2, |
|
eval_delay = 0, |
|
torch_empty_cache_steps = 250, |
|
learning_rate = 5e-05, |
|
weight_decay = 0.01, |
|
adam_beta1 = 0.9, |
|
adam_beta2 = 0.999, |
|
adam_epsilon = 1e-08, |
|
max_grad_norm = 1.0, |
|
num_train_epochs = 3.0, |
|
max_steps = -1, |
|
lr_scheduler_type = 'linear', |
|
warmup_ratio = 0.1, |
|
warmup_steps = 0, |
|
log_level = 'passive', |
|
log_level_replica = 'warning', |
|
log_on_each_node = True, |
|
logging_dir = None, |
|
logging_strategy = 'steps', |
|
logging_first_step = False, |
|
logging_steps = 1, |
|
logging_nan_inf_filter = False, |
|
save_strategy = 'steps', |
|
save_steps = 500, |
|
save_total_limit = None, |
|
save_safetensors = True, |
|
save_on_each_node = False, |
|
save_only_model = False, |
|
restore_callback_states_from_checkpoint = False, |
|
no_cuda = False, |
|
use_cpu = False, |
|
use_mps_device = False, |
|
seed = 3407, |
|
data_seed = 3407, |
|
jit_mode_eval = False, |
|
use_ipex = False, |
|
bf16 = False, |
|
fp16 = False, |
|
fp16_opt_level = 'O1', |
|
half_precision_backend = 'auto', |
|
bf16_full_eval = False, |
|
fp16_full_eval = False, |
|
tf32 = None, |
|
local_rank = -1, |
|
ddp_backend = None, |
|
tpu_num_cores = None, |
|
tpu_metrics_debug = False, |
|
debug = '', |
|
dataloader_drop_last = False, |
|
eval_steps = None, |
|
dataloader_num_workers = 0, |
|
dataloader_prefetch_factor = None, |
|
past_index = -1, |
|
run_name = None, |
|
disable_tqdm = None, |
|
remove_unused_columns = True, |
|
label_names = None, |
|
load_best_model_at_end = False, |
|
metric_for_best_model = None, |
|
greater_is_better = None, |
|
ignore_data_skip = False, |
|
fsdp = '', |
|
fsdp_min_num_params = 0, |
|
fsdp_config = None, |
|
fsdp_transformer_layer_cls_to_wrap = None, |
|
accelerator_config = None, |
|
deepspeed = None, |
|
label_smoothing_factor = 0.0, |
|
optim = 'adamw_8bit', |
|
optim_args = None, |
|
adafactor = False, |
|
group_by_length = False, |
|
length_column_name = 'length', |
|
report_to = None, |
|
ddp_find_unused_parameters = None, |
|
ddp_bucket_cap_mb = None, |
|
ddp_broadcast_buffers = None, |
|
dataloader_pin_memory = True, |
|
dataloader_persistent_workers = False, |
|
skip_memory_metrics = True, |
|
use_legacy_prediction_loop = False, |
|
push_to_hub = False, |
|
resume_from_checkpoint = None, |
|
hub_model_id = None, |
|
hub_strategy = 'every_save', |
|
hub_token = None, |
|
hub_private_repo = None, |
|
hub_always_push = False, |
|
gradient_checkpointing = False, |
|
gradient_checkpointing_kwargs = None, |
|
include_inputs_for_metrics = False, |
|
eval_do_concat_batches = True, |
|
fp16_backend = 'auto', |
|
evaluation_strategy = None, |
|
push_to_hub_model_id = None, |
|
push_to_hub_organization = None, |
|
push_to_hub_token = None, |
|
mp_parameters = '', |
|
auto_find_batch_size = False, |
|
full_determinism = False, |
|
torchdynamo = None, |
|
ray_scope = 'last', |
|
ddp_timeout = 1800, |
|
torch_compile = False, |
|
torch_compile_backend = None, |
|
torch_compile_mode = None, |
|
dispatch_batches = None, |
|
split_batches = None, |
|
include_tokens_per_second = False, |
|
include_num_input_tokens_seen = False, |
|
neftune_noise_alpha = None, |
|
optim_target_modules = None, |
|
batch_eval_metrics = False, |
|
eval_on_start = False, |
|
use_liger_kernel = False, |
|
eval_use_gather_object = False, |
|
average_tokens_across_devices = False, |
|
reward_model_path = None, |
|
judge = None, |
|
max_new_tokens = 64, |
|
max_length = 512, |
|
temperature = 0.9, |
|
missing_eos_penalty = None, |
|
loss_type = 'sigmoid', |
|
dataset_num_proc = None, |
|
disable_dropout = True, |
|
use_vllm = False, |
|
ds3_gather_for_generation = True, |
|
vllm_sampling_params = None, |
|
unsloth_num_chunks = -1, |
|
**kwargs, |
|
): |
|
if learning_rate < 1e-7: raise FloatingPointError(f'Unsloth: Your learning rate of `{learning_rate}` is too small and less than 1e-7! Consider increasing it, otherwise gradient updates will be close to 0!') |
|
if learning_rate > 1: raise OverflowError(f'Unsloth: Your learning rate of `{learning_rate}` is way too larger > 1! Consider decreasing it to 1e-1, otherwise gradient updates will explode!') |
|
if output_dir is None and save_strategy == 'steps' and save_steps == 500: |
|
output_dir = 'unsloth_training_checkpoints' |
|
save_strategy = 'no' |
|
if dataset_num_proc is None: |
|
from multiprocessing import cpu_count |
|
dataset_num_proc = cpu_count() |
|
|
|
super().__init__( |
|
output_dir = output_dir, |
|
overwrite_output_dir = overwrite_output_dir, |
|
do_train = do_train, |
|
do_eval = do_eval, |
|
do_predict = do_predict, |
|
eval_strategy = eval_strategy, |
|
prediction_loss_only = prediction_loss_only, |
|
per_device_train_batch_size = per_device_train_batch_size, |
|
per_device_eval_batch_size = per_device_eval_batch_size, |
|
per_gpu_train_batch_size = per_gpu_train_batch_size, |
|
per_gpu_eval_batch_size = per_gpu_eval_batch_size, |
|
gradient_accumulation_steps = gradient_accumulation_steps, |
|
eval_accumulation_steps = eval_accumulation_steps, |
|
eval_delay = eval_delay, |
|
torch_empty_cache_steps = torch_empty_cache_steps, |
|
learning_rate = learning_rate, |
|
weight_decay = weight_decay, |
|
adam_beta1 = adam_beta1, |
|
adam_beta2 = adam_beta2, |
|
adam_epsilon = adam_epsilon, |
|
max_grad_norm = max_grad_norm, |
|
num_train_epochs = num_train_epochs, |
|
max_steps = max_steps, |
|
lr_scheduler_type = lr_scheduler_type, |
|
warmup_ratio = warmup_ratio, |
|
warmup_steps = warmup_steps, |
|
log_level = log_level, |
|
log_level_replica = log_level_replica, |
|
log_on_each_node = log_on_each_node, |
|
logging_dir = logging_dir, |
|
logging_strategy = logging_strategy, |
|
logging_first_step = logging_first_step, |
|
logging_steps = logging_steps, |
|
logging_nan_inf_filter = logging_nan_inf_filter, |
|
save_strategy = save_strategy, |
|
save_steps = save_steps, |
|
save_total_limit = save_total_limit, |
|
save_safetensors = save_safetensors, |
|
save_on_each_node = save_on_each_node, |
|
save_only_model = save_only_model, |
|
restore_callback_states_from_checkpoint = restore_callback_states_from_checkpoint, |
|
no_cuda = no_cuda, |
|
use_cpu = use_cpu, |
|
use_mps_device = use_mps_device, |
|
seed = seed, |
|
data_seed = data_seed, |
|
jit_mode_eval = jit_mode_eval, |
|
use_ipex = use_ipex, |
|
bf16 = bf16, |
|
fp16 = fp16, |
|
fp16_opt_level = fp16_opt_level, |
|
half_precision_backend = half_precision_backend, |
|
bf16_full_eval = bf16_full_eval, |
|
fp16_full_eval = fp16_full_eval, |
|
tf32 = tf32, |
|
local_rank = local_rank, |
|
ddp_backend = ddp_backend, |
|
tpu_num_cores = tpu_num_cores, |
|
tpu_metrics_debug = tpu_metrics_debug, |
|
debug = debug, |
|
dataloader_drop_last = dataloader_drop_last, |
|
eval_steps = eval_steps, |
|
dataloader_num_workers = dataloader_num_workers, |
|
dataloader_prefetch_factor = dataloader_prefetch_factor, |
|
past_index = past_index, |
|
run_name = run_name, |
|
disable_tqdm = disable_tqdm, |
|
remove_unused_columns = remove_unused_columns, |
|
label_names = label_names, |
|
load_best_model_at_end = load_best_model_at_end, |
|
metric_for_best_model = metric_for_best_model, |
|
greater_is_better = greater_is_better, |
|
ignore_data_skip = ignore_data_skip, |
|
fsdp = fsdp, |
|
fsdp_min_num_params = fsdp_min_num_params, |
|
fsdp_config = fsdp_config, |
|
fsdp_transformer_layer_cls_to_wrap = fsdp_transformer_layer_cls_to_wrap, |
|
accelerator_config = accelerator_config, |
|
deepspeed = deepspeed, |
|
label_smoothing_factor = label_smoothing_factor, |
|
optim = optim, |
|
optim_args = optim_args, |
|
adafactor = adafactor, |
|
group_by_length = group_by_length, |
|
length_column_name = length_column_name, |
|
report_to = report_to, |
|
ddp_find_unused_parameters = ddp_find_unused_parameters, |
|
ddp_bucket_cap_mb = ddp_bucket_cap_mb, |
|
ddp_broadcast_buffers = ddp_broadcast_buffers, |
|
dataloader_pin_memory = dataloader_pin_memory, |
|
dataloader_persistent_workers = dataloader_persistent_workers, |
|
skip_memory_metrics = skip_memory_metrics, |
|
use_legacy_prediction_loop = use_legacy_prediction_loop, |
|
push_to_hub = push_to_hub, |
|
resume_from_checkpoint = resume_from_checkpoint, |
|
hub_model_id = hub_model_id, |
|
hub_strategy = hub_strategy, |
|
hub_token = hub_token, |
|
hub_private_repo = hub_private_repo, |
|
hub_always_push = hub_always_push, |
|
gradient_checkpointing = gradient_checkpointing, |
|
gradient_checkpointing_kwargs = gradient_checkpointing_kwargs, |
|
include_inputs_for_metrics = include_inputs_for_metrics, |
|
eval_do_concat_batches = eval_do_concat_batches, |
|
fp16_backend = fp16_backend, |
|
evaluation_strategy = evaluation_strategy, |
|
push_to_hub_model_id = push_to_hub_model_id, |
|
push_to_hub_organization = push_to_hub_organization, |
|
push_to_hub_token = push_to_hub_token, |
|
mp_parameters = mp_parameters, |
|
auto_find_batch_size = auto_find_batch_size, |
|
full_determinism = full_determinism, |
|
torchdynamo = torchdynamo, |
|
ray_scope = ray_scope, |
|
ddp_timeout = ddp_timeout, |
|
torch_compile = torch_compile, |
|
torch_compile_backend = torch_compile_backend, |
|
torch_compile_mode = torch_compile_mode, |
|
dispatch_batches = dispatch_batches, |
|
split_batches = split_batches, |
|
include_tokens_per_second = include_tokens_per_second, |
|
include_num_input_tokens_seen = include_num_input_tokens_seen, |
|
neftune_noise_alpha = neftune_noise_alpha, |
|
optim_target_modules = optim_target_modules, |
|
batch_eval_metrics = batch_eval_metrics, |
|
eval_on_start = eval_on_start, |
|
use_liger_kernel = use_liger_kernel, |
|
eval_use_gather_object = eval_use_gather_object, |
|
average_tokens_across_devices = average_tokens_across_devices, |
|
reward_model_path = reward_model_path, |
|
judge = judge, |
|
max_new_tokens = max_new_tokens, |
|
max_length = max_length, |
|
temperature = temperature, |
|
missing_eos_penalty = missing_eos_penalty, |
|
loss_type = loss_type, |
|
dataset_num_proc = dataset_num_proc, |
|
disable_dropout = disable_dropout, |
|
use_vllm = use_vllm, |
|
ds3_gather_for_generation = ds3_gather_for_generation,**kwargs) |
|
self.vllm_sampling_params = vllm_sampling_params |
|
self.unsloth_num_chunks = unsloth_num_chunks |
|
pass |
|
|
|
class _UnslothOnlineDPOTrainer(Trainer): |
|
r"""""" |
|
|
|
_tag_names = ["trl", "online-dpo"] |
|
|
|
def __init__( |
|
self, |
|
model: Union[PreTrainedModel, nn.Module], |
|
ref_model: Union[PreTrainedModel, nn.Module, None] = None, |
|
reward_model: Union[PreTrainedModel, nn.Module, None] = None, |
|
judge: Optional[BasePairwiseJudge] = None, |
|
args: Optional[OnlineDPOConfig] = None, |
|
data_collator: Optional[DataCollator] = None, |
|
train_dataset: Optional[Union[Dataset, IterableDataset, "datasets.Dataset"]] = None, |
|
eval_dataset: Optional[Union[Dataset, dict[str, Dataset], "datasets.Dataset"]] = None, |
|
processing_class: Optional[ |
|
Union[PreTrainedTokenizerBase, BaseImageProcessor, FeatureExtractionMixin, ProcessorMixin] |
|
] = None, |
|
reward_processing_class: Optional[PreTrainedTokenizerBase] = None, |
|
peft_config: Optional[dict] = None, |
|
compute_metrics: Optional[Callable[[EvalPrediction], dict]] = None, |
|
callbacks: Optional[list[TrainerCallback]] = None, |
|
optimizers: tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None), |
|
preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None, |
|
) -> None: |
|
|
|
if hasattr(model, 'vllm_engine') and hasattr(args, 'use_vllm') and (getattr(args, 'use_vllm', False) == False): args.use_vllm = True |
|
if ref_model is model: |
|
raise ValueError( |
|
"`model` and `ref_model` cannot be the same object. If you want `ref_model` to be the " |
|
"same as `model`, either omit the `ref_model` argument or pass `None`." |
|
) |
|
|
|
self.ref_model = ref_model |
|
|
|
if reward_model is not None and judge is not None: |
|
warnings.warn( |
|
"Both `reward_model` and `judge` are provided. Please choose provide only one of them. " |
|
"Ignoring `judge` and using `reward_model`.", |
|
UserWarning, |
|
) |
|
judge = None |
|
elif reward_model is None and judge is None: |
|
raise ValueError("Either `reward_model` or `judge` must be provided.") |
|
|
|
self.reward_model = reward_model |
|
self.reward_processing_class = reward_processing_class |
|
self.judge = judge |
|
|
|
if args.missing_eos_penalty is not None and judge is not None: |
|
raise ValueError("`missing_eos_penalty` is not supported when `judge` is provided.") |
|
|
|
if args is None: |
|
raise ValueError("`args` must be provided.") |
|
|
|
|
|
if processing_class is None: |
|
raise ValueError("`processing_class` must be provided.") |
|
|
|
|
|
if False: |
|
|
|
if not is_peft_available(): |
|
raise ImportError( |
|
"PEFT is not available and passed `peft_config`. Please install PEFT with " |
|
"`pip install peft` to use it." |
|
) |
|
|
|
|
|
|
|
if isinstance(model, PeftModel): |
|
model = model.merge_and_unload() |
|
|
|
|
|
model = model |
|
|
|
|
|
if args.disable_dropout: |
|
disable_dropout_in_model(model) |
|
if self.ref_model is not None: |
|
disable_dropout_in_model(self.ref_model) |
|
|
|
|
|
|
|
|
|
|
|
if ref_model is None: |
|
if False: |
|
self.ref_model = create_reference_model(model) |
|
else: |
|
self.ref_model = None |
|
else: |
|
self.ref_model = ref_model |
|
self.ref_model.eval() |
|
|
|
|
|
if self.reward_model is not None: |
|
self.reward_model.eval() |
|
|
|
|
|
if data_collator is None: |
|
data_collator = DPODataCollatorWithPadding(pad_token_id=processing_class.pad_token_id) |
|
|
|
self.max_length = args.max_length |
|
|
|
self.stats = { |
|
"objective/kl": [], |
|
"objective/entropy": [], |
|
"objective/non_score_reward": [], |
|
"rewards/chosen": [], |
|
"rewards/rejected": [], |
|
"rewards/accuracies": [], |
|
"rewards/margins": [], |
|
"logps/chosen": [], |
|
"logps/rejected": [], |
|
"val/contain_eos_token": [], |
|
"beta": [], |
|
} |
|
if self.reward_model is not None: |
|
self.stats["objective/rlhf_reward"] = [] |
|
self.stats["objective/scores_margin"] = [] |
|
self.stats["objective/scores"] = [] |
|
|
|
if args.use_vllm: |
|
self.llm = model.vllm_engine; self._last_loaded_step = 0; self.generation_config = SamplingParams( |
|
n=2, max_tokens=args.max_new_tokens, |
|
temperature=args.temperature, |
|
top_k=50, |
|
top_p=1.0, |
|
detokenize=False,**getattr(getattr(args, 'vllm_sampling_params', vLLMSamplingParams()), '_set_kwargs', {}),) |
|
else: |
|
self.generation_config = GenerationConfig( |
|
max_new_tokens=args.max_new_tokens, |
|
temperature=args.temperature, |
|
top_k=50, |
|
top_p=1.0, |
|
do_sample=True, |
|
use_cache=False if args.gradient_checkpointing else True, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model.warnings_issued["estimate_tokens"] = True |
|
|
|
super().__init__( |
|
model=model, |
|
args=args, |
|
data_collator=data_collator, |
|
train_dataset=train_dataset, |
|
eval_dataset=eval_dataset, |
|
processing_class=processing_class, |
|
compute_metrics=compute_metrics, |
|
callbacks=callbacks, |
|
optimizers=optimizers, |
|
preprocess_logits_for_metrics=preprocess_logits_for_metrics, |
|
) |
|
|
|
|
|
if hasattr(self.model, "add_model_tags"): |
|
self.model.add_model_tags(self._tag_names) |
|
|
|
self._beta = args.beta |
|
|
|
|
|
if self.is_deepspeed_enabled: |
|
if self.reward_model is not None: |
|
self.reward_model = prepare_deepspeed( |
|
self.reward_model, args.per_device_train_batch_size, args.fp16, args.bf16 |
|
) |
|
if self.ref_model is not None: |
|
self.ref_model = prepare_deepspeed( |
|
self.ref_model, args.per_device_train_batch_size, args.fp16, args.bf16 |
|
) |
|
else: |
|
if self.ref_model is not None: |
|
self.ref_model = self.ref_model.to(self.accelerator.device) |
|
if self.reward_model is not None: |
|
self.reward_model = self.reward_model.to(self.accelerator.device) |
|
|
|
@property |
|
def beta(self): |
|
if isinstance(self._beta, list): |
|
epoch = self.state.epoch |
|
return self._beta[epoch] if epoch < len(self._beta) else self._beta[-1] |
|
else: |
|
return self._beta |
|
|
|
@staticmethod |
|
def tokenize_row(feature, is_encoder_decoder: bool, tokenizer: PreTrainedTokenizerBase) -> dict[str, Any]: |
|
"""Tokenize a single row from a DPO specific dataset.""" |
|
if not is_encoder_decoder: |
|
batch = tokenizer(feature["prompt"], add_special_tokens=False) |
|
|
|
if tokenizer.bos_token_id is not None: |
|
prompt_len_input_ids = len(batch["input_ids"]) |
|
if prompt_len_input_ids == 0 or tokenizer.bos_token_id != batch["input_ids"][0]: |
|
batch["input_ids"] = [tokenizer.bos_token_id] + batch["input_ids"] |
|
batch["attention_mask"] = [1] + batch["attention_mask"] |
|
else: |
|
batch = tokenizer(feature["prompt"], add_special_tokens=True) |
|
batch = {f"prompt_{key}": value for key, value in batch.items()} |
|
return batch |
|
|
|
|
|
@wraps(Trainer.get_train_dataloader) |
|
def get_train_dataloader(self) -> DataLoader: |
|
if self.train_dataset is None: |
|
raise ValueError("Trainer: training requires a train_dataset.") |
|
|
|
train_dataset = self.train_dataset |
|
data_collator = self.data_collator |
|
dataloader_params = { |
|
"batch_size": self._train_batch_size, |
|
"collate_fn": data_collator, |
|
"num_workers": self.args.dataloader_num_workers, |
|
"pin_memory": self.args.dataloader_pin_memory, |
|
"persistent_workers": self.args.dataloader_persistent_workers, |
|
} |
|
|
|
if not isinstance(train_dataset, torch.utils.data.IterableDataset): |
|
dataloader_params["sampler"] = self._get_train_sampler() |
|
dataloader_params["drop_last"] = self.args.dataloader_drop_last |
|
dataloader_params["worker_init_fn"] = seed_worker |
|
dataloader_params["prefetch_factor"] = self.args.dataloader_prefetch_factor |
|
|
|
return self.accelerator.prepare(DataLoader(train_dataset, **dataloader_params)) |
|
|
|
|
|
@wraps(Trainer.get_eval_dataloader) |
|
def get_eval_dataloader(self, eval_dataset: Optional[Union[str, Dataset]] = None) -> DataLoader: |
|
if eval_dataset is None and self.eval_dataset is None: |
|
raise ValueError("Trainer: evaluation requires an eval_dataset.") |
|
|
|
|
|
|
|
dataloader_key = eval_dataset if isinstance(eval_dataset, str) else "eval" |
|
if ( |
|
hasattr(self, "_eval_dataloaders") |
|
and dataloader_key in self._eval_dataloaders |
|
and self.args.dataloader_persistent_workers |
|
): |
|
return self.accelerator.prepare(self._eval_dataloaders[dataloader_key]) |
|
|
|
eval_dataset = ( |
|
self.eval_dataset[eval_dataset] |
|
if isinstance(eval_dataset, str) |
|
else eval_dataset |
|
if eval_dataset is not None |
|
else self.eval_dataset |
|
) |
|
data_collator = self.data_collator |
|
|
|
dataloader_params = { |
|
"batch_size": self.args.eval_batch_size, |
|
"collate_fn": data_collator, |
|
"num_workers": self.args.dataloader_num_workers, |
|
"pin_memory": self.args.dataloader_pin_memory, |
|
"persistent_workers": self.args.dataloader_persistent_workers, |
|
} |
|
|
|
if not isinstance(eval_dataset, torch.utils.data.IterableDataset): |
|
dataloader_params["sampler"] = self._get_eval_sampler(eval_dataset) |
|
dataloader_params["drop_last"] = self.args.dataloader_drop_last |
|
dataloader_params["prefetch_factor"] = self.args.dataloader_prefetch_factor |
|
|
|
|
|
|
|
eval_dataloader = DataLoader(eval_dataset, **dataloader_params) |
|
if self.args.dataloader_persistent_workers: |
|
if hasattr(self, "_eval_dataloaders"): |
|
self._eval_dataloaders[dataloader_key] = eval_dataloader |
|
else: |
|
self._eval_dataloaders = {dataloader_key: eval_dataloader} |
|
|
|
return self.accelerator.prepare(eval_dataloader) |
|
|
|
def _generate_vllm(self, model, prompts): |
|
eos_token_id = self.processing_class.eos_token_id |
|
pad_token_id = self.processing_class.pad_token_id |
|
|
|
|
|
|
|
pass |
|
|
|
pass |
|
|
|
if is_conversational({"prompt": prompts[0]}): |
|
outputs = self.llm.chat(prompts, self.generation_config, use_tqdm=False, lora_request = self.model.load_lora('online_dpo_trainer_lora_model', load_tensors = True)) |
|
else: |
|
outputs = self.llm.generate(prompts, self.generation_config, use_tqdm=False, lora_request = self.model.load_lora('online_dpo_trainer_lora_model', load_tensors = True)) |
|
|
|
completion_ids = [list(output.outputs[i].token_ids) for i in range(2) for output in outputs] |
|
prompt_ids = [list(output.prompt_token_ids) for _ in range(2) for output in outputs] |
|
|
|
|
|
max_prompt_length = max(len(ids) for ids in prompt_ids) |
|
prompt_mask = [[0] * (max_prompt_length - len(ids)) + [1] * len(ids) for ids in prompt_ids] |
|
prompt_ids = [[pad_token_id] * (max_prompt_length - len(ids)) + ids for ids in prompt_ids] |
|
max_tokens = self.generation_config.max_tokens |
|
completion_mask = [[1] * len(ids) + [0] * (max_tokens - len(ids)) for ids in completion_ids] |
|
completion_ids = [ |
|
ids + [eos_token_id] if ids[-1] != eos_token_id and len(ids) < max_tokens else ids |
|
for ids in completion_ids |
|
] |
|
completion_ids = [ids + [pad_token_id] * (max_tokens - len(ids)) for ids in completion_ids] |
|
|
|
|
|
prompt_ids = torch.tensor(prompt_ids, device=self.accelerator.device) |
|
prompt_mask = torch.tensor(prompt_mask, device=self.accelerator.device) |
|
completion_ids = torch.tensor(completion_ids, device=self.accelerator.device) |
|
completion_mask = torch.tensor(completion_mask, device=self.accelerator.device) |
|
|
|
return prompt_ids, prompt_mask, completion_ids, completion_mask |
|
|
|
def _generate(self, model, prompts): |
|
eos_token_id = self.processing_class.eos_token_id |
|
pad_token_id = self.processing_class.pad_token_id |
|
|
|
|
|
|
|
inputs = [{"prompt": prompt} for prompt in prompts] |
|
inputs = [maybe_apply_chat_template(x, self.processing_class) for x in inputs] |
|
inputs = [self.tokenize_row(x, model.config.is_encoder_decoder, self.processing_class) for x in inputs] |
|
inputs = self.data_collator(inputs) |
|
|
|
|
|
inputs = self._prepare_inputs(inputs) |
|
prompt_ids = inputs["prompt_input_ids"].repeat(2, 1) |
|
prompt_mask = inputs["prompt_attention_mask"].repeat(2, 1) |
|
with unwrap_model_for_generation( |
|
model, self.accelerator, gather_deepspeed3_params=self.args.ds3_gather_for_generation |
|
) as unwrapped_model: |
|
output = unwrapped_model.generate( |
|
input_ids=prompt_ids, |
|
attention_mask=prompt_mask, |
|
generation_config=self.generation_config, |
|
) |
|
|
|
completion_ids = output[:, prompt_ids.size(1) :] |
|
completion_ids, completion_mask = truncate_right(completion_ids, eos_token_id, pad_token_id) |
|
|
|
return prompt_ids, prompt_mask, completion_ids, completion_mask |
|
|
|
def _forward(self, model, prompt_ids, prompt_mask, completion_ids, completion_mask): |
|
|
|
num_tokens_to_truncate = max(prompt_ids.size(1) + completion_ids.size(1) - self.max_length, 0) |
|
|
|
|
|
prompt_ids = prompt_ids[:, num_tokens_to_truncate:] |
|
prompt_mask = prompt_mask[:, num_tokens_to_truncate:] |
|
|
|
|
|
prompt_completion_ids = torch.cat((prompt_ids, completion_ids), dim=1) |
|
prompt_completion_mask = torch.cat((prompt_mask, completion_mask), dim=1) |
|
|
|
|
|
output = model(prompt_completion_ids, attention_mask=prompt_completion_mask) |
|
|
|
|
|
logits = output.logits[:, prompt_ids.size(1) - 1 : -1] |
|
|
|
|
|
logprobs = torch.take_along_dim(logits.log_softmax(dim=-1), completion_ids.unsqueeze(-1), dim=2).squeeze(-1) |
|
return logprobs |
|
|
|
def training_step( |
|
self, model: nn.Module, inputs: dict[str, Union[torch.Tensor, Any]], num_items_in_batch: Optional[int] = None |
|
) -> torch.Tensor: |
|
model.train() |
|
|
|
prompts = inputs["prompt"] |
|
batch_size = len(prompts) |
|
|
|
if self.args.use_vllm: |
|
prompt_ids, prompt_mask, completion_ids, completion_mask = self._generate_vllm(model, prompts) |
|
else: |
|
prompt_ids, prompt_mask, completion_ids, completion_mask = self._generate(model, prompts) |
|
|
|
contain_eos_token = torch.any(completion_ids == self.processing_class.eos_token_id, dim=-1) |
|
|
|
logprobs = self._forward(model, prompt_ids, prompt_mask, completion_ids, completion_mask) |
|
with torch.no_grad(): |
|
if self.ref_model is not None: |
|
ref_logprobs = self._forward(self.ref_model, prompt_ids, prompt_mask, completion_ids, completion_mask) |
|
else: |
|
with self.model.disable_adapter(): |
|
ref_logprobs = self._forward(self.model, prompt_ids, prompt_mask, completion_ids, completion_mask) |
|
|
|
|
|
device = logprobs.device |
|
completions = self.processing_class.batch_decode(completion_ids, skip_special_tokens=True) |
|
if is_conversational({"prompt": prompts[0]}): |
|
completions = [[{"role": "assistant", "content": completion}] for completion in completions] |
|
|
|
|
|
if self.judge is not None: |
|
|
|
|
|
|
|
|
|
if is_conversational({"prompt": prompts[0]}): |
|
environment = jinja2.Environment() |
|
template = environment.from_string(SIMPLE_CHAT_TEMPLATE) |
|
prompts = [template.render(messages=prompt) for prompt in prompts] |
|
completions = [template.render(messages=completion) for completion in completions] |
|
|
|
ranks_of_first_completion = self.judge.judge( |
|
prompts, list(zip(completions[:batch_size], completions[batch_size:])) |
|
) |
|
|
|
|
|
|
|
|
|
mask = torch.tensor([rank == 0 for rank in ranks_of_first_completion], device=device) |
|
else: |
|
|
|
|
|
prompts = 2 * prompts |
|
if is_conversational({"prompt": prompts[0]}): |
|
examples = [{"prompt": p, "completion": c} for p, c in zip(prompts, completions)] |
|
examples = [apply_chat_template(example, self.reward_processing_class) for example in examples] |
|
prompts = [example["prompt"] for example in examples] |
|
completions = [example["completion"] for example in examples] |
|
|
|
|
|
prompts_ids = self.reward_processing_class( |
|
prompts, padding=True, return_tensors="pt", padding_side="left" |
|
)["input_ids"].to(device) |
|
context_length = prompts_ids.shape[1] |
|
|
|
|
|
completions_ids = self.reward_processing_class( |
|
completions, padding=True, return_tensors="pt", padding_side="right" |
|
)["input_ids"].to(device) |
|
|
|
|
|
prompt_completion_ids = torch.cat((prompts_ids, completions_ids), dim=1) |
|
with torch.inference_mode(): |
|
_, scores, _ = get_reward( |
|
self.reward_model, prompt_completion_ids, self.reward_processing_class.pad_token_id, context_length |
|
) |
|
|
|
|
|
|
|
if self.args.missing_eos_penalty is not None: |
|
scores[~contain_eos_token] -= self.args.missing_eos_penalty |
|
|
|
|
|
first_half, second_half = scores.split(batch_size) |
|
|
|
|
|
mask = first_half >= second_half |
|
|
|
batch_range = torch.arange(batch_size, device=device) |
|
chosen_indices = batch_range + (~mask * batch_size) |
|
rejected_indices = batch_range + (mask * batch_size) |
|
|
|
|
|
cr_indices = torch.cat((chosen_indices, rejected_indices), dim=0) |
|
cr_logprobs = logprobs[cr_indices] |
|
cr_ref_logprobs = ref_logprobs[cr_indices] |
|
|
|
|
|
padding_mask = ~completion_mask.bool() |
|
cr_padding_mask = padding_mask[cr_indices] |
|
|
|
cr_logprobs_sum = (cr_logprobs * ~cr_padding_mask).sum(1) |
|
cr_ref_logprobs_sum = (cr_ref_logprobs * ~cr_padding_mask).sum(1) |
|
|
|
|
|
chosen_logprobs_sum, rejected_logprobs_sum = torch.split(cr_logprobs_sum, batch_size) |
|
chosen_ref_logprobs_sum, rejected_ref_logprobs_sum = torch.split(cr_ref_logprobs_sum, batch_size) |
|
pi_logratios = chosen_logprobs_sum - rejected_logprobs_sum |
|
ref_logratios = chosen_ref_logprobs_sum - rejected_ref_logprobs_sum |
|
|
|
logits = pi_logratios - ref_logratios |
|
|
|
if self.args.loss_type == "sigmoid": |
|
losses = -F.logsigmoid(self.beta * logits) |
|
elif self.args.loss_type == "ipo": |
|
losses = (logits - 1 / (2 * self.beta)) ** 2 |
|
else: |
|
raise NotImplementedError(f"invalid loss type {self.loss_type}") |
|
|
|
loss = losses.mean() |
|
|
|
|
|
if self.reward_model is not None: |
|
scores_margin = scores[chosen_indices] - scores[rejected_indices] |
|
self.stats["objective/scores_margin"].append( |
|
self.accelerator.gather_for_metrics(scores_margin.mean()).mean().item() |
|
) |
|
self.stats["objective/scores"].append(self.accelerator.gather_for_metrics(scores.mean()).mean().item()) |
|
self.stats["val/contain_eos_token"].append(contain_eos_token.float().mean().item()) |
|
self.stats["logps/chosen"].append(self.accelerator.gather_for_metrics(chosen_logprobs_sum).mean().item()) |
|
self.stats["logps/rejected"].append(self.accelerator.gather_for_metrics(rejected_logprobs_sum).mean().item()) |
|
|
|
kl = logprobs - ref_logprobs |
|
mean_kl = kl.sum(1).mean() |
|
self.stats["objective/kl"].append(self.accelerator.gather_for_metrics(mean_kl).mean().item()) |
|
non_score_reward = (-self.beta * kl).sum(1) |
|
mean_non_score_reward = non_score_reward.mean() |
|
self.stats["objective/non_score_reward"].append( |
|
self.accelerator.gather_for_metrics(mean_non_score_reward).mean().item() |
|
) |
|
if self.reward_model is not None: |
|
rlhf_reward = scores + non_score_reward |
|
self.stats["objective/rlhf_reward"].append(self.accelerator.gather_for_metrics(rlhf_reward).mean().item()) |
|
mean_entropy = -logprobs.sum(1).mean() |
|
self.stats["objective/entropy"].append(self.accelerator.gather_for_metrics(mean_entropy).mean().item()) |
|
chosen_rewards = self.beta * (chosen_logprobs_sum - chosen_ref_logprobs_sum) |
|
gathered_chosen_rewards = self.accelerator.gather_for_metrics(chosen_rewards) |
|
self.stats["rewards/chosen"].append(gathered_chosen_rewards.mean().item()) |
|
rejected_rewards = self.beta * (rejected_logprobs_sum - rejected_ref_logprobs_sum) |
|
gathered_rejected_rewards = self.accelerator.gather_for_metrics(rejected_rewards) |
|
self.stats["rewards/rejected"].append(gathered_rejected_rewards.mean().item()) |
|
margin = gathered_chosen_rewards - gathered_rejected_rewards |
|
self.stats["rewards/margins"].append(margin.mean().item()) |
|
accuracy = margin > 0 |
|
self.stats["rewards/accuracies"].append(accuracy.float().mean().item()) |
|
self.stats["beta"].append(self.beta) |
|
|
|
if ( |
|
self.args.torch_empty_cache_steps is not None |
|
and self.state.global_step % self.args.torch_empty_cache_steps == 0 |
|
): |
|
empty_cache() |
|
|
|
kwargs = {} |
|
|
|
|
|
if self.args.optim in [OptimizerNames.LOMO, OptimizerNames.ADALOMO]: |
|
kwargs["learning_rate"] = self._get_learning_rate() |
|
|
|
if self.args.n_gpu > 1: |
|
loss = loss.mean() |
|
|
|
if self.use_apex: |
|
with amp.scale_loss(loss, self.optimizer) as scaled_loss: |
|
scaled_loss.backward() |
|
else: |
|
self.accelerator.backward(loss, **kwargs) |
|
|
|
return loss.detach() / self.args.gradient_accumulation_steps |
|
|
|
|
|
|
|
def _maybe_log_save_evaluate(self, tr_loss, grad_norm, model, trial, epoch, ignore_keys_for_eval, start_time=None): |
|
if self.control.should_log and self.state.global_step > self._globalstep_last_logged: |
|
logs: dict[str, float] = {} |
|
|
|
|
|
tr_loss_scalar = self._nested_gather(tr_loss).mean().item() |
|
|
|
|
|
tr_loss -= tr_loss |
|
|
|
logs["loss"] = round(tr_loss_scalar / (self.state.global_step - self._globalstep_last_logged), 4) |
|
if grad_norm is not None: |
|
logs["grad_norm"] = grad_norm.detach().item() if isinstance(grad_norm, torch.Tensor) else grad_norm |
|
logs["learning_rate"] = self._get_learning_rate() |
|
|
|
|
|
for key, val in self.stats.items(): |
|
logs[key] = sum(val) / len(val) |
|
self.stats = {key: [] for key in self.stats} |
|
|
|
self._total_loss_scalar += tr_loss_scalar |
|
self._globalstep_last_logged = self.state.global_step |
|
self.store_flos() |
|
|
|
if version.parse(transformers.__version__) >= version.parse("4.47.0.dev0"): |
|
self.log(logs, start_time) |
|
else: |
|
self.log(logs) |
|
|
|
metrics = None |
|
if self.control.should_evaluate: |
|
metrics = self._evaluate(trial, ignore_keys_for_eval) |
|
is_new_best_metric = self._determine_best_metric(metrics=metrics, trial=trial) |
|
|
|
if self.args.save_strategy == "best": |
|
self.control.should_save = is_new_best_metric |
|
|
|
if self.control.should_save: |
|
self._save_checkpoint(model, trial) |
|
self.control = self.callback_handler.on_save(self.args, self.state, self.control) |
|
|
|
|
|
|
|
|
|
def _determine_best_metric(self, metrics, trial): |
|
""" |
|
Determine if the model should be saved based on the evaluation metrics. |
|
If args.metric_for_best_model is not set, the loss is used. |
|
Returns: |
|
bool: True if a new best metric was found, else False |
|
""" |
|
is_new_best_metric = False |
|
|
|
if self.args.metric_for_best_model is not None: |
|
metric_to_check = self.args.metric_for_best_model |
|
|
|
if not metric_to_check.startswith("eval_"): |
|
metric_to_check = f"eval_{metric_to_check}" |
|
|
|
try: |
|
metric_value = metrics[metric_to_check] |
|
except KeyError as exc: |
|
raise KeyError( |
|
f"The `metric_for_best_model` training argument is set to '{metric_to_check}', which is not found in the evaluation metrics. " |
|
f"The available evaluation metrics are: {list(metrics.keys())}. Consider changing the `metric_for_best_model` via the TrainingArguments." |
|
) from exc |
|
|
|
operator = np.greater if self.args.greater_is_better else np.less |
|
|
|
if self.state.best_metric is None: |
|
self.state.best_metric = float("-inf") if self.args.greater_is_better else float("inf") |
|
|
|
if operator(metric_value, self.state.best_metric): |
|
run_dir = self._get_output_dir(trial=trial) |
|
checkpoint_folder = f"{PREFIX_CHECKPOINT_DIR}-{self.state.global_step}" |
|
output_dir = os.path.join(run_dir, checkpoint_folder) |
|
self.state.best_metric = metric_value |
|
self.state.best_model_checkpoint = output_dir |
|
|
|
is_new_best_metric = True |
|
|
|
return is_new_best_metric |
|
|
|
def create_model_card( |
|
self, |
|
model_name: Optional[str] = None, |
|
dataset_name: Optional[str] = None, |
|
tags: Union[str, list[str], None] = None, |
|
): |
|
""" |
|
Creates a draft of a model card using the information available to the `Trainer`. |
|
|
|
Args: |
|
model_name (`str` or `None`, *optional*, defaults to `None`): |
|
Name of the model. |
|
dataset_name (`str` or `None`, *optional*, defaults to `None`): |
|
Name of the dataset used for training. |
|
tags (`str`, `list[str]` or `None`, *optional*, defaults to `None`): |
|
Tags to be associated with the model card. |
|
""" |
|
if not self.is_world_process_zero(): |
|
return |
|
|
|
if hasattr(self.model.config, "_name_or_path") and not os.path.isdir(self.model.config._name_or_path): |
|
base_model = self.model.config._name_or_path |
|
else: |
|
base_model = None |
|
|
|
tags = tags or [] |
|
if isinstance(tags, str): |
|
tags = [tags] |
|
|
|
if hasattr(self.model.config, "unsloth_version"): |
|
tags.append("unsloth") |
|
|
|
citation = textwrap.dedent("""\ |
|
@article{guo2024direct, |
|
title = {{Direct Language Model Alignment from Online AI Feedback}}, |
|
author = {Shangmin Guo and Biao Zhang and Tianlin Liu and Tianqi Liu and Misha Khalman and Felipe Llinares and Alexandre Ram{\'{e}} and Thomas Mesnard and Yao Zhao and Bilal Piot and Johan Ferret and Mathieu Blondel}, |
|
year = 2024, |
|
eprint = {arXiv:2402.04792} |
|
}""") |
|
|
|
model_card = generate_model_card( |
|
base_model=base_model, |
|
model_name=model_name, |
|
hub_model_id=self.hub_model_id, |
|
dataset_name=dataset_name, |
|
tags=tags, |
|
wandb_url=wandb.run.get_url() if is_wandb_available() and wandb.run is not None else None, |
|
comet_url=get_comet_experiment_url(), |
|
trainer_name="Online DPO", |
|
trainer_citation=citation, |
|
paper_title="Direct Language Model Alignment from Online AI Feedback", |
|
paper_id="2402.04792", |
|
) |
|
model_card.save(os.path.join(self.args.output_dir, "README.md")) |
|
class UnslothOnlineDPOTrainer(_UnslothOnlineDPOTrainer): |
|
""" |
|
|
|
Initialize OnlineDPOTrainer. |
|
|
|
Args: |
|
model (`transformers.PreTrainedModel` or `torch.nn.Module`): |
|
The model to train, preferably an `AutoModelForCausalLM`. |
|
ref_model (`transformers.PreTrainedModel` or `torch.nn.Module` or `None`): |
|
The reference model to use for training. If None is specified, the reference model will be created from |
|
the model. |
|
reward_model (`transformers.PreTrainedModel` or `torch.nn.Module` or `None`): |
|
The reward model to score completions with, preferably an `AutoModelForSequenceClassification`. |
|
judge (`BasePairwiseJudge`): |
|
The judge to use for pairwise comparison of model completions. |
|
args (`OnlineDPOConfig`): |
|
The online DPO config arguments to use for training. |
|
data_collator (`transformers.DataCollator`): |
|
The data collator to use for training. If None is specified, the default data collator (`DPODataCollatorWithPadding`) will be used |
|
which will pad the sequences to the maximum length of the sequences in the batch, given a dataset of paired sequences. |
|
train_dataset (`datasets.Dataset`): |
|
The dataset to use for training. |
|
eval_dataset (`datasets.Dataset`): |
|
The dataset to use for evaluation. |
|
processing_class (`PreTrainedTokenizerBase` or `BaseImageProcessor` or `FeatureExtractionMixin` or `ProcessorMixin`, *optional*): |
|
Processing class used to process the data. If provided, will be used to automatically process the inputs |
|
for the model, and it will be saved along the model to make it easier to rerun an interrupted training or |
|
reuse the fine-tuned model. |
|
peft_config (`dict`): |
|
The peft config to use for training. |
|
compute_metrics (`Callable[[EvalPrediction], dict]`, *optional*): |
|
The function to use to compute the metrics. Must take a `EvalPrediction` and return |
|
a dictionary string to metric values. |
|
callbacks (`list[transformers.TrainerCallback]`): |
|
The callbacks to use for training. |
|
optimizers (`tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR]`): |
|
The optimizer and scheduler to use for training. |
|
preprocess_logits_for_metrics (`Callable[[torch.Tensor, torch.Tensor], torch.Tensor]`): |
|
The function to use to preprocess the logits before computing the metrics. |
|
|
|
""" |
|
def __init__( |
|
self, |
|
model, |
|
ref_model = None, |
|
reward_model = None, |
|
judge = None, |
|
args = None, |
|
data_collator = None, |
|
train_dataset = None, |
|
eval_dataset = None, |
|
processing_class = None, |
|
reward_processing_class = None, |
|
peft_config = None, |
|
compute_metrics = None, |
|
callbacks = None, |
|
preprocess_logits_for_metrics = None, |
|
**kwargs |
|
): |
|
if args is None: args = UnslothOnlineDPOConfig() |
|
use_bf16 = getattr(args, 'bf16', False) |
|
use_fp16 = getattr(args, 'fp16', False) |
|
force_float32 = False |
|
if os.environ.get('UNSLOTH_FORCE_FLOAT32', '0') == '1': |
|
print('Unsloth: Switching to float32 training since model cannot work with float16') |
|
force_float32 = True |
|
mixed_precision_dtype = os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32') |
|
dtype = getattr(model.config, 'torch_dtype', None) |
|
if dtype is None: dtype = model.get_input_embeddings().dtype |
|
from unsloth_zoo.utils import _get_dtype |
|
dtype = _get_dtype(dtype) |
|
float16 = dtype == torch.float16 |
|
if not force_float32 and (float16 and use_bf16): raise TypeError('Unsloth: Model is in float16 precision but you want to use bfloat16 precision. Set fp16 to `True` and bf16 to `False`') |
|
if not force_float32 and (not float16 and use_fp16): raise TypeError('Unsloth: Model is in bfloat16 precision but you want to use float16 precision. Set fp16 to `False` and bf16 to `True`') |
|
if force_float32: |
|
args.fp16 = False |
|
args.bf16 = False |
|
os.environ['ACCELERATE_MIXED_PRECISION'] = 'no' |
|
elif (not use_bf16 and not use_fp16) and mixed_precision_dtype == 'float32': |
|
args.fp16 = float16 |
|
args.bf16 = not float16 |
|
os.environ['ACCELERATE_MIXED_PRECISION'] = 'fp16' if float16 else 'bf16' |
|
if getattr(args, 'eval_dataset', None) is not None and getattr(args, 'eval_strategy', 'no') == 'no': |
|
args.eval_strategy = 'steps' |
|
if getattr(args, 'eval_steps', None) is None: args.eval_steps = 0.1 |
|
ga_steps = getattr(args, 'gradient_accumulation_steps', None) |
|
if ga_steps is not None and ga_steps > 1: |
|
from transformers import __version__ as transformers_version |
|
if Version(transformers_version) <= Version('4.45.2'): |
|
print('**** Unsloth: Please use our fixed gradient_accumulation_steps by updating transformers, TRL and Unsloth!\n' |
|
'`pip install --upgrade --no-cache-dir --force-reinstall --no-deps unsloth transformers trl unsloth_zoo`') |
|
if getattr(args, 'eval_strategy', 'no') != 'no': |
|
eval_bsz = getattr(args, 'per_device_eval_batch_size', 8) |
|
if eval_bsz == 8 and args.per_device_train_batch_size < eval_bsz: args.per_device_eval_batch_size = args.per_device_train_batch_size |
|
if getattr(args, 'eval_accumulation_steps', None) is None and ga_steps is not None: args.eval_accumulation_steps = ga_steps |
|
fp16_full_eval = getattr(args, 'fp16_full_eval', False) |
|
bf16_full_eval = getattr(args, 'bf16_full_eval', False) |
|
if args.fp16 and bf16_full_eval: args.bf16_full_eval = False; args.fp16_full_eval = True |
|
if args.bf16 and fp16_full_eval: args.bf16_full_eval = True; args.fp16_full_eval = False |
|
if force_float32: |
|
args.bf16_full_eval = False |
|
args.fp16_full_eval = False |
|
elif os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32') == 'bfloat16': |
|
args.bf16_full_eval = True |
|
args.fp16_full_eval = False |
|
elif not bf16_full_eval and not fp16_full_eval: |
|
args.bf16_full_eval = args.bf16 |
|
args.fp16_full_eval = args.fp16 |
|
_output_logits = False |
|
if locals().get('compute_metrics', None) is not None: _output_logits = True |
|
if locals().get('preprocess_logits_for_metrics', None) is not None: _output_logits = True |
|
if _output_logits: |
|
os.environ['UNSLOTH_RETURN_LOGITS'] = '1' |
|
if 'max_seq_length' not in locals() and not hasattr(args, 'max_seq_length'): |
|
pass |
|
else: |
|
model_max_seq_length = getattr(model, 'max_seq_length', None) |
|
args_max_seq_length = getattr(args, 'max_seq_length', None) |
|
if args_max_seq_length is None and model_max_seq_length is not None: |
|
max_seq_length = model.max_seq_length |
|
if hasattr(args, 'max_seq_length'): args.max_seq_length = max_seq_length |
|
if model is not None and hasattr(model, 'for_training'): |
|
model.for_training() |
|
if 'tokenizer' in locals() and hasattr(tokenizer, 'padding_side'): tokenizer.padding_side = 'right' |
|
if 'processing_class' in locals(): |
|
if hasattr(processing_class, 'padding_side'): processing_class.padding_side = 'right' |
|
if hasattr(processing_class, 'tokenizer') and hasattr(processing_class.tokenizer, 'padding_side'): processing_class.tokenizer.padding_side = 'right' |
|
__tokenizer = processing_class if 'processing_class' in locals() else tokenizer |
|
from unsloth_zoo.vision_utils import UnslothVisionDataCollator |
|
if not isinstance(data_collator, UnslothVisionDataCollator): |
|
if isinstance(data_collator, DataCollatorForSeq2Seq) and 'labels' not in train_dataset.column_names: |
|
data_collator = DataCollatorForLanguageModeling(__tokenizer, mlm = False) |
|
elif isinstance(data_collator, DataCollatorForLanguageModeling) and 'labels' in train_dataset.column_names: |
|
data_collator = DataCollatorForSeq2Seq(__tokenizer) |
|
else: |
|
if hasattr(args, 'remove_unused_columns'): args.remove_unused_columns = False |
|
if hasattr(args, 'dataset_text_field'): args.dataset_text_field = '' |
|
if hasattr(args, 'dataset_kwargs'): args.dataset_kwargs = {'skip_prepare_dataset': True} |
|
if not isinstance(data_collator, UnslothVisionDataCollator): |
|
if not hasattr(__tokenizer, 'pad') and hasattr(__tokenizer, 'tokenizer'): |
|
if isinstance(data_collator, DataCollatorForSeq2Seq): |
|
data_collator = DataCollatorForSeq2Seq(__tokenizer.tokenizer) |
|
else: |
|
data_collator = DataCollatorForLanguageModeling(__tokenizer.tokenizer, mlm = False) |
|
other_metrics = [] |
|
|
|
from unsloth_zoo.logging_utils import PatchRLStatistics |
|
PatchRLStatistics('online_dpo_trainer', other_metrics) |
|
|
|
super().__init__( |
|
model = model, |
|
ref_model = ref_model, |
|
reward_model = reward_model, |
|
judge = judge, |
|
args = args, |
|
data_collator = data_collator, |
|
train_dataset = train_dataset, |
|
eval_dataset = eval_dataset, |
|
processing_class = processing_class, |
|
reward_processing_class = reward_processing_class, |
|
peft_config = peft_config, |
|
compute_metrics = compute_metrics, |
|
callbacks = callbacks, |
|
preprocess_logits_for_metrics = preprocess_logits_for_metrics,**kwargs) |
|
if hasattr(self, 'neftune_hook_handle'): |
|
self.neftune_hook_handle.remove() |
|
if hasattr(self, 'neftune_hook_handle'): del self.neftune_hook_handle |
|
if getattr(args, 'neftune_noise_alpha', None) is not None: |
|
model.get_input_embeddings().neftune_noise_alpha = self.neftune_noise_alpha |
|
pass |
|
|
|
pass |
|
|