kevinwang676's picture
Upload folder using huggingface_hub
d5eed08 verified
"""
2025.3.12
2025.3.14
4.48.3
0.15.2
__UNSLOTH_VERSIONING__
"""
from torch import Tensor
import torch
import torch.nn as nn
from torch.nn import functional as F
from trl.trainer.online_dpo_trainer import (Any, BaseImageProcessor, BasePairwiseJudge, Callable, DPODataCollatorWithPadding, DataCollator, DataLoader, Dataset, EvalPrediction, F, FeatureExtractionMixin, GenerationConfig, IterableDataset, OnlineDPOConfig, OnlineDPOTrainer, OptimizerNames, Optional, PREFIX_CHECKPOINT_DIR, PeftModel, PreTrainedModel, PreTrainedTokenizerBase, ProcessorMixin, SIMPLE_CHAT_TEMPLATE, Trainer, TrainerCallback, Union, apply_chat_template, create_reference_model, datasets, disable_dropout_in_model, empty_cache, generate_model_card, get_comet_experiment_url, get_reward, is_conversational, is_peft_available, is_wandb_available, jinja2, logging, maybe_apply_chat_template, nn, np, os, prepare_deepspeed, seed_worker, textwrap, torch, transformers, truncate_right, unwrap_model_for_generation, version, wandb, warnings, wraps, F, is_conversational, os, torch)
import os
from typing import *
from dataclasses import dataclass, field
from packaging.version import Version
import torch
import numpy as np
from contextlib import nullcontext
from torch.nn import functional as F
from transformers import DataCollatorForSeq2Seq, DataCollatorForLanguageModeling
torch_compile_options = {
"epilogue_fusion" : True,
"max_autotune" : False,
"shape_padding" : True,
"trace.enabled" : False,
"triton.cudagraphs" : False,
}
@torch.compile(dynamic = True, fullgraph = True, options = torch_compile_options,)
def selective_log_softmax(logits, index):
logits = logits.to(torch.float32)
selected_logits = torch.gather(logits, dim = -1, index = index.unsqueeze(-1)).squeeze(-1)
# loop to reduce peak mem consumption
# logsumexp_values = torch.stack([torch.logsumexp(lg, dim=-1) for lg in logits])
logsumexp_values = torch.logsumexp(logits, dim = -1)
per_token_logps = selected_logits - logsumexp_values # log_softmax(x_i) = x_i - logsumexp(x)
return per_token_logps
def vLLMSamplingParams(**kwargs):
from vllm import SamplingParams
sampling_params = SamplingParams(**kwargs)
sampling_params._set_kwargs = kwargs
return sampling_params
@dataclass
class UnslothOnlineDPOConfig(OnlineDPOConfig):
"""
Configuration class for the [`OnlineDPOTrainer`].
Using [`~transformers.HfArgumentParser`] we can turn this class into
[argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the
command line.
Parameters:
learning_rate (`float`, *optional*, defaults to `5e-7`):
Initial learning rate for [`AdamW`] optimizer. The default value replaces that of
[`~transformers.TrainingArguments`].
reward_model_path (`str` or `None`, *optional*, defaults to `None`):
Path to the reward model. Either `judge` or `reward_model_path` must be set, but not both.
judge (`str` or `None`, *optional*, defaults to `None`):
Name of the judge to use. Either `judge` or `reward_model_path` must be set, but not both.
max_new_tokens (`int`, *optional*, defaults to `64`):
Maximum number of tokens to generate per completion.
max_length (`int`, *optional*, defaults to `256`):
Maximum total length of the sequence (prompt + completion) used to compute log probabilities. If the
sequence exceeds this limit, the leftmost tokens will be truncated to preserve as much of the completion as
possible.
temperature (`float`, *optional*, defaults to `0.9`):
Temperature for sampling. The higher the temperature, the more random the completions.
missing_eos_penalty (`float` or `None`, *optional*, defaults to `None`):
Penalty applied to the score when the model fails to generate an EOS token. This is useful to encourage
to generate completions shorter than the maximum length (`max_new_tokens`). The penalty must be a positive
value.
beta (`float` or `list[float]`, *optional*, defaults to `0.1`):
Parameter controlling the deviation from the reference model. Higher β means less deviation from the
reference model. For the IPO loss (`loss_type="ipo"`), β is the regularization parameter denoted by τ in
the [paper](https://huggingface.co/papers/2310.12036). If a list of floats is provided then the β is
selected for each new epoch and the last β is used for the rest of the epochs.
loss_type (`str`, *optional*, defaults to `"sigmoid"`):
Type of loss to use. Possible values are:
- `"sigmoid"`: sigmoid loss from the original [DPO](https://huggingface.co/papers/2305.18290) paper.
- `"ipo"`: IPO loss from the [IPO](https://huggingface.co/papers/2310.12036) paper.
dataset_num_proc (`int` or `None`, *optional*, defaults to `None`):
Number of processes to use for processing the dataset.
disable_dropout (`bool`, *optional*, defaults to `True`):
Whether to disable dropout in the model and reference model.
use_vllm (`bool`, *optional*, defaults to `False`):
Whether to use vLLM for generating completions. Requires vLLM to be installed (`pip install vllm`).
ds3_gather_for_generation (`bool`, *optional*, defaults to `True`):
This setting applies to DeepSpeed ZeRO-3. If enabled, the policy model weights are gathered for generation,
improving generation speed. However, disabling this option allows training models that exceed the VRAM
capacity of a single GPU, albeit at the cost of slower generation.
"""
vllm_sampling_params: Optional[Any] = field(
default = None,
metadata = {'help': 'vLLM SamplingParams'},
)
unsloth_num_chunks : Optional[int] = field(
default = -1,
metadata = {'help': 'Chunk size to reduce memory usage. -1 is most efficient.'},
)
def __init__(
self,
output_dir = None,
overwrite_output_dir = None,
do_train = False,
do_eval = False,
do_predict = False,
eval_strategy = 'no',
prediction_loss_only = False,
per_device_train_batch_size = 4,
per_device_eval_batch_size = 4,
per_gpu_train_batch_size = None,
per_gpu_eval_batch_size = None,
gradient_accumulation_steps = 2,
eval_accumulation_steps = 2,
eval_delay = 0,
torch_empty_cache_steps = 250,
learning_rate = 5e-05,
weight_decay = 0.01,
adam_beta1 = 0.9,
adam_beta2 = 0.999,
adam_epsilon = 1e-08,
max_grad_norm = 1.0,
num_train_epochs = 3.0,
max_steps = -1,
lr_scheduler_type = 'linear',
warmup_ratio = 0.1,
warmup_steps = 0,
log_level = 'passive',
log_level_replica = 'warning',
log_on_each_node = True,
logging_dir = None,
logging_strategy = 'steps',
logging_first_step = False,
logging_steps = 1,
logging_nan_inf_filter = False,
save_strategy = 'steps',
save_steps = 500,
save_total_limit = None,
save_safetensors = True,
save_on_each_node = False,
save_only_model = False,
restore_callback_states_from_checkpoint = False,
no_cuda = False,
use_cpu = False,
use_mps_device = False,
seed = 3407,
data_seed = 3407,
jit_mode_eval = False,
use_ipex = False,
bf16 = False,
fp16 = False,
fp16_opt_level = 'O1',
half_precision_backend = 'auto',
bf16_full_eval = False,
fp16_full_eval = False,
tf32 = None,
local_rank = -1,
ddp_backend = None,
tpu_num_cores = None,
tpu_metrics_debug = False,
debug = '',
dataloader_drop_last = False,
eval_steps = None,
dataloader_num_workers = 0,
dataloader_prefetch_factor = None,
past_index = -1,
run_name = None,
disable_tqdm = None,
remove_unused_columns = True,
label_names = None,
load_best_model_at_end = False,
metric_for_best_model = None,
greater_is_better = None,
ignore_data_skip = False,
fsdp = '',
fsdp_min_num_params = 0,
fsdp_config = None,
fsdp_transformer_layer_cls_to_wrap = None,
accelerator_config = None,
deepspeed = None,
label_smoothing_factor = 0.0,
optim = 'adamw_8bit',
optim_args = None,
adafactor = False,
group_by_length = False,
length_column_name = 'length',
report_to = None,
ddp_find_unused_parameters = None,
ddp_bucket_cap_mb = None,
ddp_broadcast_buffers = None,
dataloader_pin_memory = True,
dataloader_persistent_workers = False,
skip_memory_metrics = True,
use_legacy_prediction_loop = False,
push_to_hub = False,
resume_from_checkpoint = None,
hub_model_id = None,
hub_strategy = 'every_save',
hub_token = None,
hub_private_repo = None,
hub_always_push = False,
gradient_checkpointing = False,
gradient_checkpointing_kwargs = None,
include_inputs_for_metrics = False,
eval_do_concat_batches = True,
fp16_backend = 'auto',
evaluation_strategy = None,
push_to_hub_model_id = None,
push_to_hub_organization = None,
push_to_hub_token = None,
mp_parameters = '',
auto_find_batch_size = False,
full_determinism = False,
torchdynamo = None,
ray_scope = 'last',
ddp_timeout = 1800,
torch_compile = False,
torch_compile_backend = None,
torch_compile_mode = None,
dispatch_batches = None,
split_batches = None,
include_tokens_per_second = False,
include_num_input_tokens_seen = False,
neftune_noise_alpha = None,
optim_target_modules = None,
batch_eval_metrics = False,
eval_on_start = False,
use_liger_kernel = False,
eval_use_gather_object = False,
average_tokens_across_devices = False,
reward_model_path = None,
judge = None,
max_new_tokens = 64,
max_length = 512,
temperature = 0.9,
missing_eos_penalty = None,
loss_type = 'sigmoid',
dataset_num_proc = None,
disable_dropout = True,
use_vllm = False,
ds3_gather_for_generation = True,
vllm_sampling_params = None,
unsloth_num_chunks = -1,
**kwargs,
):
if learning_rate < 1e-7: raise FloatingPointError(f'Unsloth: Your learning rate of `{learning_rate}` is too small and less than 1e-7! Consider increasing it, otherwise gradient updates will be close to 0!')
if learning_rate > 1: raise OverflowError(f'Unsloth: Your learning rate of `{learning_rate}` is way too larger > 1! Consider decreasing it to 1e-1, otherwise gradient updates will explode!')
if output_dir is None and save_strategy == 'steps' and save_steps == 500:
output_dir = 'unsloth_training_checkpoints'
save_strategy = 'no'
if dataset_num_proc is None:
from multiprocessing import cpu_count
dataset_num_proc = cpu_count()
super().__init__(
output_dir = output_dir,
overwrite_output_dir = overwrite_output_dir,
do_train = do_train,
do_eval = do_eval,
do_predict = do_predict,
eval_strategy = eval_strategy,
prediction_loss_only = prediction_loss_only,
per_device_train_batch_size = per_device_train_batch_size,
per_device_eval_batch_size = per_device_eval_batch_size,
per_gpu_train_batch_size = per_gpu_train_batch_size,
per_gpu_eval_batch_size = per_gpu_eval_batch_size,
gradient_accumulation_steps = gradient_accumulation_steps,
eval_accumulation_steps = eval_accumulation_steps,
eval_delay = eval_delay,
torch_empty_cache_steps = torch_empty_cache_steps,
learning_rate = learning_rate,
weight_decay = weight_decay,
adam_beta1 = adam_beta1,
adam_beta2 = adam_beta2,
adam_epsilon = adam_epsilon,
max_grad_norm = max_grad_norm,
num_train_epochs = num_train_epochs,
max_steps = max_steps,
lr_scheduler_type = lr_scheduler_type,
warmup_ratio = warmup_ratio,
warmup_steps = warmup_steps,
log_level = log_level,
log_level_replica = log_level_replica,
log_on_each_node = log_on_each_node,
logging_dir = logging_dir,
logging_strategy = logging_strategy,
logging_first_step = logging_first_step,
logging_steps = logging_steps,
logging_nan_inf_filter = logging_nan_inf_filter,
save_strategy = save_strategy,
save_steps = save_steps,
save_total_limit = save_total_limit,
save_safetensors = save_safetensors,
save_on_each_node = save_on_each_node,
save_only_model = save_only_model,
restore_callback_states_from_checkpoint = restore_callback_states_from_checkpoint,
no_cuda = no_cuda,
use_cpu = use_cpu,
use_mps_device = use_mps_device,
seed = seed,
data_seed = data_seed,
jit_mode_eval = jit_mode_eval,
use_ipex = use_ipex,
bf16 = bf16,
fp16 = fp16,
fp16_opt_level = fp16_opt_level,
half_precision_backend = half_precision_backend,
bf16_full_eval = bf16_full_eval,
fp16_full_eval = fp16_full_eval,
tf32 = tf32,
local_rank = local_rank,
ddp_backend = ddp_backend,
tpu_num_cores = tpu_num_cores,
tpu_metrics_debug = tpu_metrics_debug,
debug = debug,
dataloader_drop_last = dataloader_drop_last,
eval_steps = eval_steps,
dataloader_num_workers = dataloader_num_workers,
dataloader_prefetch_factor = dataloader_prefetch_factor,
past_index = past_index,
run_name = run_name,
disable_tqdm = disable_tqdm,
remove_unused_columns = remove_unused_columns,
label_names = label_names,
load_best_model_at_end = load_best_model_at_end,
metric_for_best_model = metric_for_best_model,
greater_is_better = greater_is_better,
ignore_data_skip = ignore_data_skip,
fsdp = fsdp,
fsdp_min_num_params = fsdp_min_num_params,
fsdp_config = fsdp_config,
fsdp_transformer_layer_cls_to_wrap = fsdp_transformer_layer_cls_to_wrap,
accelerator_config = accelerator_config,
deepspeed = deepspeed,
label_smoothing_factor = label_smoothing_factor,
optim = optim,
optim_args = optim_args,
adafactor = adafactor,
group_by_length = group_by_length,
length_column_name = length_column_name,
report_to = report_to,
ddp_find_unused_parameters = ddp_find_unused_parameters,
ddp_bucket_cap_mb = ddp_bucket_cap_mb,
ddp_broadcast_buffers = ddp_broadcast_buffers,
dataloader_pin_memory = dataloader_pin_memory,
dataloader_persistent_workers = dataloader_persistent_workers,
skip_memory_metrics = skip_memory_metrics,
use_legacy_prediction_loop = use_legacy_prediction_loop,
push_to_hub = push_to_hub,
resume_from_checkpoint = resume_from_checkpoint,
hub_model_id = hub_model_id,
hub_strategy = hub_strategy,
hub_token = hub_token,
hub_private_repo = hub_private_repo,
hub_always_push = hub_always_push,
gradient_checkpointing = gradient_checkpointing,
gradient_checkpointing_kwargs = gradient_checkpointing_kwargs,
include_inputs_for_metrics = include_inputs_for_metrics,
eval_do_concat_batches = eval_do_concat_batches,
fp16_backend = fp16_backend,
evaluation_strategy = evaluation_strategy,
push_to_hub_model_id = push_to_hub_model_id,
push_to_hub_organization = push_to_hub_organization,
push_to_hub_token = push_to_hub_token,
mp_parameters = mp_parameters,
auto_find_batch_size = auto_find_batch_size,
full_determinism = full_determinism,
torchdynamo = torchdynamo,
ray_scope = ray_scope,
ddp_timeout = ddp_timeout,
torch_compile = torch_compile,
torch_compile_backend = torch_compile_backend,
torch_compile_mode = torch_compile_mode,
dispatch_batches = dispatch_batches,
split_batches = split_batches,
include_tokens_per_second = include_tokens_per_second,
include_num_input_tokens_seen = include_num_input_tokens_seen,
neftune_noise_alpha = neftune_noise_alpha,
optim_target_modules = optim_target_modules,
batch_eval_metrics = batch_eval_metrics,
eval_on_start = eval_on_start,
use_liger_kernel = use_liger_kernel,
eval_use_gather_object = eval_use_gather_object,
average_tokens_across_devices = average_tokens_across_devices,
reward_model_path = reward_model_path,
judge = judge,
max_new_tokens = max_new_tokens,
max_length = max_length,
temperature = temperature,
missing_eos_penalty = missing_eos_penalty,
loss_type = loss_type,
dataset_num_proc = dataset_num_proc,
disable_dropout = disable_dropout,
use_vllm = use_vllm,
ds3_gather_for_generation = ds3_gather_for_generation,**kwargs)
self.vllm_sampling_params = vllm_sampling_params
self.unsloth_num_chunks = unsloth_num_chunks
pass
class _UnslothOnlineDPOTrainer(Trainer):
r""""""
_tag_names = ["trl", "online-dpo"]
def __init__(
self,
model: Union[PreTrainedModel, nn.Module],
ref_model: Union[PreTrainedModel, nn.Module, None] = None,
reward_model: Union[PreTrainedModel, nn.Module, None] = None,
judge: Optional[BasePairwiseJudge] = None,
args: Optional[OnlineDPOConfig] = None,
data_collator: Optional[DataCollator] = None,
train_dataset: Optional[Union[Dataset, IterableDataset, "datasets.Dataset"]] = None,
eval_dataset: Optional[Union[Dataset, dict[str, Dataset], "datasets.Dataset"]] = None,
processing_class: Optional[
Union[PreTrainedTokenizerBase, BaseImageProcessor, FeatureExtractionMixin, ProcessorMixin]
] = None,
reward_processing_class: Optional[PreTrainedTokenizerBase] = None,
peft_config: Optional[dict] = None,
compute_metrics: Optional[Callable[[EvalPrediction], dict]] = None,
callbacks: Optional[list[TrainerCallback]] = None,
optimizers: tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None),
preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None,
) -> None:
if hasattr(model, 'vllm_engine') and hasattr(args, 'use_vllm') and (getattr(args, 'use_vllm', False) == False): args.use_vllm = True
if ref_model is model:
raise ValueError(
"`model` and `ref_model` cannot be the same object. If you want `ref_model` to be the "
"same as `model`, either omit the `ref_model` argument or pass `None`."
)
self.ref_model = ref_model
if reward_model is not None and judge is not None:
warnings.warn(
"Both `reward_model` and `judge` are provided. Please choose provide only one of them. "
"Ignoring `judge` and using `reward_model`.",
UserWarning,
)
judge = None
elif reward_model is None and judge is None:
raise ValueError("Either `reward_model` or `judge` must be provided.")
self.reward_model = reward_model
self.reward_processing_class = reward_processing_class
self.judge = judge
if args.missing_eos_penalty is not None and judge is not None:
raise ValueError("`missing_eos_penalty` is not supported when `judge` is provided.")
if args is None:
raise ValueError("`args` must be provided.")
# Check that the processing_class is provided
if processing_class is None:
raise ValueError("`processing_class` must be provided.")
# Convert to PEFT model if peft_config is provided
if False:
# Check if PEFT is available
if not is_peft_available():
raise ImportError(
"PEFT is not available and passed `peft_config`. Please install PEFT with "
"`pip install peft` to use it."
)
# If the model is already a PeftModel, we need to merge and unload it.
# Further information here: https://huggingface.co/docs/trl/dpo_trainer#reference-model-considerations-with-peft
if isinstance(model, PeftModel):
model = model.merge_and_unload()
# Get peft model with the given config
model = model
# Disable dropout in the model and reference model
if args.disable_dropout:
disable_dropout_in_model(model)
if self.ref_model is not None:
disable_dropout_in_model(self.ref_model)
# Handle the ref_model
# Usually, the user wants the ref model to be the initial version of the model. When using PEFT, it's easy to
# get the ref model, as it's just the model with a disabled adapter. When not using PEFT, we need to create
# the ref model from the model by copying it and disable the gradients and set it in evaluation mode.
if ref_model is None: # No ref model provided, the most common case
if False:
self.ref_model = create_reference_model(model) # copy, disable gradients, set eval mode
else:
self.ref_model = None # we don't need a ref model here, we can just disable the adapter.
else: # rare case, the user provided a ref model
self.ref_model = ref_model
self.ref_model.eval()
# Disable the gradient and set the reward model in eval mode
if self.reward_model is not None:
self.reward_model.eval()
# Define the collator is not provided
if data_collator is None:
data_collator = DPODataCollatorWithPadding(pad_token_id=processing_class.pad_token_id)
self.max_length = args.max_length
self.stats = {
"objective/kl": [],
"objective/entropy": [],
"objective/non_score_reward": [],
"rewards/chosen": [],
"rewards/rejected": [],
"rewards/accuracies": [],
"rewards/margins": [],
"logps/chosen": [],
"logps/rejected": [],
"val/contain_eos_token": [],
"beta": [],
}
if self.reward_model is not None:
self.stats["objective/rlhf_reward"] = []
self.stats["objective/scores_margin"] = []
self.stats["objective/scores"] = []
if args.use_vllm:
self.llm = model.vllm_engine; self._last_loaded_step = 0; self.generation_config = SamplingParams(
n=2, max_tokens=args.max_new_tokens,
temperature=args.temperature,
top_k=50,
top_p=1.0,
detokenize=False,**getattr(getattr(args, 'vllm_sampling_params', vLLMSamplingParams()), '_set_kwargs', {}),)
else:
self.generation_config = GenerationConfig(
max_new_tokens=args.max_new_tokens,
temperature=args.temperature,
top_k=50,
top_p=1.0,
do_sample=True,
use_cache=False if args.gradient_checkpointing else True,
)
# The trainer estimates the number of FLOPs (floating-point operations) using the number of elements in the
# input tensor associated with the key "input_ids". However, in Online DPO, the sampled data does not include
# the "input_ids" key. As a result, the trainer issues the warning: "Could not estimate the number of tokens
# of the input, floating-point operations will not be computed." To suppress this warning, we set the
# "estimate_tokens" key in the model's "warnings_issued" dictionary to True. This acts as a flag to indicate
# that the warning has already been issued.
model.warnings_issued["estimate_tokens"] = True
super().__init__(
model=model,
args=args,
data_collator=data_collator,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
processing_class=processing_class,
compute_metrics=compute_metrics,
callbacks=callbacks,
optimizers=optimizers,
preprocess_logits_for_metrics=preprocess_logits_for_metrics,
)
# Add tags for models that have been loaded with the correct transformers version
if hasattr(self.model, "add_model_tags"):
self.model.add_model_tags(self._tag_names)
self._beta = args.beta
# Placed after the super().__init__ because we need self.is_deepspeed_enabled and self.accelerator
if self.is_deepspeed_enabled:
if self.reward_model is not None:
self.reward_model = prepare_deepspeed(
self.reward_model, args.per_device_train_batch_size, args.fp16, args.bf16
)
if self.ref_model is not None:
self.ref_model = prepare_deepspeed(
self.ref_model, args.per_device_train_batch_size, args.fp16, args.bf16
)
else:
if self.ref_model is not None:
self.ref_model = self.ref_model.to(self.accelerator.device)
if self.reward_model is not None:
self.reward_model = self.reward_model.to(self.accelerator.device)
@property
def beta(self):
if isinstance(self._beta, list):
epoch = self.state.epoch
return self._beta[epoch] if epoch < len(self._beta) else self._beta[-1]
else:
return self._beta
@staticmethod
def tokenize_row(feature, is_encoder_decoder: bool, tokenizer: PreTrainedTokenizerBase) -> dict[str, Any]:
"""Tokenize a single row from a DPO specific dataset."""
if not is_encoder_decoder:
batch = tokenizer(feature["prompt"], add_special_tokens=False)
# Add BOS token to head of prompt. Avoid adding if it's already there
if tokenizer.bos_token_id is not None:
prompt_len_input_ids = len(batch["input_ids"])
if prompt_len_input_ids == 0 or tokenizer.bos_token_id != batch["input_ids"][0]:
batch["input_ids"] = [tokenizer.bos_token_id] + batch["input_ids"]
batch["attention_mask"] = [1] + batch["attention_mask"]
else:
batch = tokenizer(feature["prompt"], add_special_tokens=True)
batch = {f"prompt_{key}": value for key, value in batch.items()}
return batch
# Same as Trainer.get_train_dataloader but skip the "remove_unused_columns".
@wraps(Trainer.get_train_dataloader)
def get_train_dataloader(self) -> DataLoader:
if self.train_dataset is None:
raise ValueError("Trainer: training requires a train_dataset.")
train_dataset = self.train_dataset
data_collator = self.data_collator
dataloader_params = {
"batch_size": self._train_batch_size,
"collate_fn": data_collator,
"num_workers": self.args.dataloader_num_workers,
"pin_memory": self.args.dataloader_pin_memory,
"persistent_workers": self.args.dataloader_persistent_workers,
}
if not isinstance(train_dataset, torch.utils.data.IterableDataset):
dataloader_params["sampler"] = self._get_train_sampler()
dataloader_params["drop_last"] = self.args.dataloader_drop_last
dataloader_params["worker_init_fn"] = seed_worker
dataloader_params["prefetch_factor"] = self.args.dataloader_prefetch_factor
return self.accelerator.prepare(DataLoader(train_dataset, **dataloader_params))
# Same as Trainer.get_eval_dataloader but skip the "remove_unused_columns".
@wraps(Trainer.get_eval_dataloader)
def get_eval_dataloader(self, eval_dataset: Optional[Union[str, Dataset]] = None) -> DataLoader:
if eval_dataset is None and self.eval_dataset is None:
raise ValueError("Trainer: evaluation requires an eval_dataset.")
# If we have persistent workers, don't do a fork bomb especially as eval datasets
# don't change during training
dataloader_key = eval_dataset if isinstance(eval_dataset, str) else "eval"
if (
hasattr(self, "_eval_dataloaders")
and dataloader_key in self._eval_dataloaders
and self.args.dataloader_persistent_workers
):
return self.accelerator.prepare(self._eval_dataloaders[dataloader_key])
eval_dataset = (
self.eval_dataset[eval_dataset]
if isinstance(eval_dataset, str)
else eval_dataset
if eval_dataset is not None
else self.eval_dataset
)
data_collator = self.data_collator
dataloader_params = {
"batch_size": self.args.eval_batch_size,
"collate_fn": data_collator,
"num_workers": self.args.dataloader_num_workers,
"pin_memory": self.args.dataloader_pin_memory,
"persistent_workers": self.args.dataloader_persistent_workers,
}
if not isinstance(eval_dataset, torch.utils.data.IterableDataset):
dataloader_params["sampler"] = self._get_eval_sampler(eval_dataset)
dataloader_params["drop_last"] = self.args.dataloader_drop_last
dataloader_params["prefetch_factor"] = self.args.dataloader_prefetch_factor
# accelerator.free_memory() will destroy the references, so
# we need to store the non-prepared version
eval_dataloader = DataLoader(eval_dataset, **dataloader_params)
if self.args.dataloader_persistent_workers:
if hasattr(self, "_eval_dataloaders"):
self._eval_dataloaders[dataloader_key] = eval_dataloader
else:
self._eval_dataloaders = {dataloader_key: eval_dataloader}
return self.accelerator.prepare(eval_dataloader)
def _generate_vllm(self, model, prompts):
eos_token_id = self.processing_class.eos_token_id
pad_token_id = self.processing_class.pad_token_id
# Load the latest weights
pass
pass
if is_conversational({"prompt": prompts[0]}):
outputs = self.llm.chat(prompts, self.generation_config, use_tqdm=False, lora_request = self.model.load_lora('online_dpo_trainer_lora_model', load_tensors = True))
else:
outputs = self.llm.generate(prompts, self.generation_config, use_tqdm=False, lora_request = self.model.load_lora('online_dpo_trainer_lora_model', load_tensors = True))
completion_ids = [list(output.outputs[i].token_ids) for i in range(2) for output in outputs]
prompt_ids = [list(output.prompt_token_ids) for _ in range(2) for output in outputs]
# Create mask and pad the prompt and completion
max_prompt_length = max(len(ids) for ids in prompt_ids)
prompt_mask = [[0] * (max_prompt_length - len(ids)) + [1] * len(ids) for ids in prompt_ids]
prompt_ids = [[pad_token_id] * (max_prompt_length - len(ids)) + ids for ids in prompt_ids]
max_tokens = self.generation_config.max_tokens
completion_mask = [[1] * len(ids) + [0] * (max_tokens - len(ids)) for ids in completion_ids]
completion_ids = [
ids + [eos_token_id] if ids[-1] != eos_token_id and len(ids) < max_tokens else ids
for ids in completion_ids
]
completion_ids = [ids + [pad_token_id] * (max_tokens - len(ids)) for ids in completion_ids]
# Convert to tensors
prompt_ids = torch.tensor(prompt_ids, device=self.accelerator.device)
prompt_mask = torch.tensor(prompt_mask, device=self.accelerator.device)
completion_ids = torch.tensor(completion_ids, device=self.accelerator.device)
completion_mask = torch.tensor(completion_mask, device=self.accelerator.device)
return prompt_ids, prompt_mask, completion_ids, completion_mask
def _generate(self, model, prompts):
eos_token_id = self.processing_class.eos_token_id
pad_token_id = self.processing_class.pad_token_id
# Apply chat template and tokenize the input. We do this on-the-fly to enable the use of reward models and
# policies with different tokenizers / chat templates.
inputs = [{"prompt": prompt} for prompt in prompts]
inputs = [maybe_apply_chat_template(x, self.processing_class) for x in inputs]
inputs = [self.tokenize_row(x, model.config.is_encoder_decoder, self.processing_class) for x in inputs]
inputs = self.data_collator(inputs)
# Sample 2 completions per prompt of size `max_new_tokens` from the model
inputs = self._prepare_inputs(inputs)
prompt_ids = inputs["prompt_input_ids"].repeat(2, 1)
prompt_mask = inputs["prompt_attention_mask"].repeat(2, 1)
with unwrap_model_for_generation(
model, self.accelerator, gather_deepspeed3_params=self.args.ds3_gather_for_generation
) as unwrapped_model:
output = unwrapped_model.generate(
input_ids=prompt_ids,
attention_mask=prompt_mask,
generation_config=self.generation_config,
)
completion_ids = output[:, prompt_ids.size(1) :]
completion_ids, completion_mask = truncate_right(completion_ids, eos_token_id, pad_token_id)
return prompt_ids, prompt_mask, completion_ids, completion_mask
def _forward(self, model, prompt_ids, prompt_mask, completion_ids, completion_mask):
# Get the number of tokens to truncate from prompt
num_tokens_to_truncate = max(prompt_ids.size(1) + completion_ids.size(1) - self.max_length, 0)
# Truncate left to avoid oom
prompt_ids = prompt_ids[:, num_tokens_to_truncate:]
prompt_mask = prompt_mask[:, num_tokens_to_truncate:]
# Concat the prompt and completion
prompt_completion_ids = torch.cat((prompt_ids, completion_ids), dim=1)
prompt_completion_mask = torch.cat((prompt_mask, completion_mask), dim=1)
# Get the logprobs of the completions from the model
output = model(prompt_completion_ids, attention_mask=prompt_completion_mask)
# There is 1 offset, because the model predict the next token
logits = output.logits[:, prompt_ids.size(1) - 1 : -1]
# Take the completion tokens logprob
logprobs = torch.take_along_dim(logits.log_softmax(dim=-1), completion_ids.unsqueeze(-1), dim=2).squeeze(-1)
return logprobs
def training_step(
self, model: nn.Module, inputs: dict[str, Union[torch.Tensor, Any]], num_items_in_batch: Optional[int] = None
) -> torch.Tensor:
model.train()
prompts = inputs["prompt"]
batch_size = len(prompts)
if self.args.use_vllm:
prompt_ids, prompt_mask, completion_ids, completion_mask = self._generate_vllm(model, prompts)
else:
prompt_ids, prompt_mask, completion_ids, completion_mask = self._generate(model, prompts)
contain_eos_token = torch.any(completion_ids == self.processing_class.eos_token_id, dim=-1)
logprobs = self._forward(model, prompt_ids, prompt_mask, completion_ids, completion_mask)
with torch.no_grad():
if self.ref_model is not None:
ref_logprobs = self._forward(self.ref_model, prompt_ids, prompt_mask, completion_ids, completion_mask)
else: # peft case: we just need to disable the adapter
with self.model.disable_adapter():
ref_logprobs = self._forward(self.model, prompt_ids, prompt_mask, completion_ids, completion_mask)
# Decode the completions, and format them if the input is conversational
device = logprobs.device
completions = self.processing_class.batch_decode(completion_ids, skip_special_tokens=True)
if is_conversational({"prompt": prompts[0]}):
completions = [[{"role": "assistant", "content": completion}] for completion in completions]
# Get the reward from the reward model or judge
if self.judge is not None:
# Once formatted, conversational data may contain special tokens (such as <|im_start|>) that are not
# directly understandable by the judge and could alter its judgment. To avoid this and make the judge
# independent of the model's chat template, we use the raw conversation data, and apply our own chat
# template to it.
if is_conversational({"prompt": prompts[0]}):
environment = jinja2.Environment()
template = environment.from_string(SIMPLE_CHAT_TEMPLATE)
prompts = [template.render(messages=prompt) for prompt in prompts]
completions = [template.render(messages=completion) for completion in completions]
ranks_of_first_completion = self.judge.judge(
prompts, list(zip(completions[:batch_size], completions[batch_size:]))
)
# convert ranks to a True/False mask:
# when rank == 0, it means the first completion is the best
# when rank == 1, it means the second completion is the best
mask = torch.tensor([rank == 0 for rank in ranks_of_first_completion], device=device)
else:
# The reward model may not have the same chat template or tokenizer as the model, so we need to use the
# raw data (string), apply the chat template (if needed), and tokenize it with the reward processing class.
prompts = 2 * prompts # repeat the prompt: [prompt0, prompt1] -> [prompt0, prompt1, prompt0, prompt1]
if is_conversational({"prompt": prompts[0]}):
examples = [{"prompt": p, "completion": c} for p, c in zip(prompts, completions)]
examples = [apply_chat_template(example, self.reward_processing_class) for example in examples]
prompts = [example["prompt"] for example in examples]
completions = [example["completion"] for example in examples]
# Tokenize the prompts
prompts_ids = self.reward_processing_class(
prompts, padding=True, return_tensors="pt", padding_side="left"
)["input_ids"].to(device)
context_length = prompts_ids.shape[1]
# Tokenize the completions
completions_ids = self.reward_processing_class(
completions, padding=True, return_tensors="pt", padding_side="right"
)["input_ids"].to(device)
# Concatenate the prompts and completions and get the reward
prompt_completion_ids = torch.cat((prompts_ids, completions_ids), dim=1)
with torch.inference_mode():
_, scores, _ = get_reward(
self.reward_model, prompt_completion_ids, self.reward_processing_class.pad_token_id, context_length
)
# Filter completion. Ensure that the sample contains stop_token_id
# Completions not passing that filter will receive a lower score.
if self.args.missing_eos_penalty is not None:
scores[~contain_eos_token] -= self.args.missing_eos_penalty
# Split the scores in 2 (the prompts of the first half are the same as the second half)
first_half, second_half = scores.split(batch_size)
# Get the indices of the chosen and rejected examples
mask = first_half >= second_half
batch_range = torch.arange(batch_size, device=device)
chosen_indices = batch_range + (~mask * batch_size)
rejected_indices = batch_range + (mask * batch_size)
# Build tensor so that the first half is the chosen examples and the second half the rejected examples
cr_indices = torch.cat((chosen_indices, rejected_indices), dim=0) # cr = chosen and rejected
cr_logprobs = logprobs[cr_indices]
cr_ref_logprobs = ref_logprobs[cr_indices]
# mask out the padding tokens
padding_mask = ~completion_mask.bool()
cr_padding_mask = padding_mask[cr_indices]
cr_logprobs_sum = (cr_logprobs * ~cr_padding_mask).sum(1)
cr_ref_logprobs_sum = (cr_ref_logprobs * ~cr_padding_mask).sum(1)
# Split the chosen and rejected examples
chosen_logprobs_sum, rejected_logprobs_sum = torch.split(cr_logprobs_sum, batch_size)
chosen_ref_logprobs_sum, rejected_ref_logprobs_sum = torch.split(cr_ref_logprobs_sum, batch_size)
pi_logratios = chosen_logprobs_sum - rejected_logprobs_sum
ref_logratios = chosen_ref_logprobs_sum - rejected_ref_logprobs_sum
logits = pi_logratios - ref_logratios
if self.args.loss_type == "sigmoid":
losses = -F.logsigmoid(self.beta * logits)
elif self.args.loss_type == "ipo":
losses = (logits - 1 / (2 * self.beta)) ** 2
else:
raise NotImplementedError(f"invalid loss type {self.loss_type}")
loss = losses.mean()
# Log everything
if self.reward_model is not None:
scores_margin = scores[chosen_indices] - scores[rejected_indices]
self.stats["objective/scores_margin"].append(
self.accelerator.gather_for_metrics(scores_margin.mean()).mean().item()
)
self.stats["objective/scores"].append(self.accelerator.gather_for_metrics(scores.mean()).mean().item())
self.stats["val/contain_eos_token"].append(contain_eos_token.float().mean().item())
self.stats["logps/chosen"].append(self.accelerator.gather_for_metrics(chosen_logprobs_sum).mean().item())
self.stats["logps/rejected"].append(self.accelerator.gather_for_metrics(rejected_logprobs_sum).mean().item())
kl = logprobs - ref_logprobs
mean_kl = kl.sum(1).mean()
self.stats["objective/kl"].append(self.accelerator.gather_for_metrics(mean_kl).mean().item())
non_score_reward = (-self.beta * kl).sum(1)
mean_non_score_reward = non_score_reward.mean()
self.stats["objective/non_score_reward"].append(
self.accelerator.gather_for_metrics(mean_non_score_reward).mean().item()
)
if self.reward_model is not None:
rlhf_reward = scores + non_score_reward
self.stats["objective/rlhf_reward"].append(self.accelerator.gather_for_metrics(rlhf_reward).mean().item())
mean_entropy = -logprobs.sum(1).mean()
self.stats["objective/entropy"].append(self.accelerator.gather_for_metrics(mean_entropy).mean().item())
chosen_rewards = self.beta * (chosen_logprobs_sum - chosen_ref_logprobs_sum)
gathered_chosen_rewards = self.accelerator.gather_for_metrics(chosen_rewards)
self.stats["rewards/chosen"].append(gathered_chosen_rewards.mean().item())
rejected_rewards = self.beta * (rejected_logprobs_sum - rejected_ref_logprobs_sum)
gathered_rejected_rewards = self.accelerator.gather_for_metrics(rejected_rewards)
self.stats["rewards/rejected"].append(gathered_rejected_rewards.mean().item())
margin = gathered_chosen_rewards - gathered_rejected_rewards
self.stats["rewards/margins"].append(margin.mean().item())
accuracy = margin > 0
self.stats["rewards/accuracies"].append(accuracy.float().mean().item())
self.stats["beta"].append(self.beta)
if (
self.args.torch_empty_cache_steps is not None
and self.state.global_step % self.args.torch_empty_cache_steps == 0
):
empty_cache()
kwargs = {}
# For LOMO optimizers you need to explicitly use the learnign rate
if self.args.optim in [OptimizerNames.LOMO, OptimizerNames.ADALOMO]:
kwargs["learning_rate"] = self._get_learning_rate()
if self.args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel training
if self.use_apex:
with amp.scale_loss(loss, self.optimizer) as scaled_loss:
scaled_loss.backward()
else:
self.accelerator.backward(loss, **kwargs)
return loss.detach() / self.args.gradient_accumulation_steps
# Same as Trainer._maybe_log_save_evaluate but log our metrics
# start_time defaults to None to allow compatibility with transformers<=4.46
def _maybe_log_save_evaluate(self, tr_loss, grad_norm, model, trial, epoch, ignore_keys_for_eval, start_time=None):
if self.control.should_log and self.state.global_step > self._globalstep_last_logged:
logs: dict[str, float] = {}
# all_gather + mean() to get average loss over all processes
tr_loss_scalar = self._nested_gather(tr_loss).mean().item()
# reset tr_loss to zero
tr_loss -= tr_loss
logs["loss"] = round(tr_loss_scalar / (self.state.global_step - self._globalstep_last_logged), 4)
if grad_norm is not None:
logs["grad_norm"] = grad_norm.detach().item() if isinstance(grad_norm, torch.Tensor) else grad_norm
logs["learning_rate"] = self._get_learning_rate()
# Add our metrics
for key, val in self.stats.items():
logs[key] = sum(val) / len(val)
self.stats = {key: [] for key in self.stats} # reset stats
self._total_loss_scalar += tr_loss_scalar
self._globalstep_last_logged = self.state.global_step
self.store_flos()
if version.parse(transformers.__version__) >= version.parse("4.47.0.dev0"):
self.log(logs, start_time)
else: # transformers<=4.46
self.log(logs)
metrics = None
if self.control.should_evaluate:
metrics = self._evaluate(trial, ignore_keys_for_eval)
is_new_best_metric = self._determine_best_metric(metrics=metrics, trial=trial)
if self.args.save_strategy == "best":
self.control.should_save = is_new_best_metric
if self.control.should_save:
self._save_checkpoint(model, trial)
self.control = self.callback_handler.on_save(self.args, self.state, self.control)
# Copy-pasted from transformers.Trainer to maintain compatibility with earlier versions.
# This can be removed once the minimum transformers version is updated to 4.47.
# Refer to https://github.com/huggingface/trl/pull/2288 for more details.
def _determine_best_metric(self, metrics, trial):
"""
Determine if the model should be saved based on the evaluation metrics.
If args.metric_for_best_model is not set, the loss is used.
Returns:
bool: True if a new best metric was found, else False
"""
is_new_best_metric = False
if self.args.metric_for_best_model is not None:
metric_to_check = self.args.metric_for_best_model
if not metric_to_check.startswith("eval_"):
metric_to_check = f"eval_{metric_to_check}"
try:
metric_value = metrics[metric_to_check]
except KeyError as exc:
raise KeyError(
f"The `metric_for_best_model` training argument is set to '{metric_to_check}', which is not found in the evaluation metrics. "
f"The available evaluation metrics are: {list(metrics.keys())}. Consider changing the `metric_for_best_model` via the TrainingArguments."
) from exc
operator = np.greater if self.args.greater_is_better else np.less
if self.state.best_metric is None:
self.state.best_metric = float("-inf") if self.args.greater_is_better else float("inf")
if operator(metric_value, self.state.best_metric):
run_dir = self._get_output_dir(trial=trial)
checkpoint_folder = f"{PREFIX_CHECKPOINT_DIR}-{self.state.global_step}"
output_dir = os.path.join(run_dir, checkpoint_folder)
self.state.best_metric = metric_value
self.state.best_model_checkpoint = output_dir
is_new_best_metric = True
return is_new_best_metric
def create_model_card(
self,
model_name: Optional[str] = None,
dataset_name: Optional[str] = None,
tags: Union[str, list[str], None] = None,
):
"""
Creates a draft of a model card using the information available to the `Trainer`.
Args:
model_name (`str` or `None`, *optional*, defaults to `None`):
Name of the model.
dataset_name (`str` or `None`, *optional*, defaults to `None`):
Name of the dataset used for training.
tags (`str`, `list[str]` or `None`, *optional*, defaults to `None`):
Tags to be associated with the model card.
"""
if not self.is_world_process_zero():
return
if hasattr(self.model.config, "_name_or_path") and not os.path.isdir(self.model.config._name_or_path):
base_model = self.model.config._name_or_path
else:
base_model = None
tags = tags or []
if isinstance(tags, str):
tags = [tags]
if hasattr(self.model.config, "unsloth_version"):
tags.append("unsloth")
citation = textwrap.dedent("""\
@article{guo2024direct,
title = {{Direct Language Model Alignment from Online AI Feedback}},
author = {Shangmin Guo and Biao Zhang and Tianlin Liu and Tianqi Liu and Misha Khalman and Felipe Llinares and Alexandre Ram{\'{e}} and Thomas Mesnard and Yao Zhao and Bilal Piot and Johan Ferret and Mathieu Blondel},
year = 2024,
eprint = {arXiv:2402.04792}
}""")
model_card = generate_model_card(
base_model=base_model,
model_name=model_name,
hub_model_id=self.hub_model_id,
dataset_name=dataset_name,
tags=tags,
wandb_url=wandb.run.get_url() if is_wandb_available() and wandb.run is not None else None,
comet_url=get_comet_experiment_url(),
trainer_name="Online DPO",
trainer_citation=citation,
paper_title="Direct Language Model Alignment from Online AI Feedback",
paper_id="2402.04792",
)
model_card.save(os.path.join(self.args.output_dir, "README.md"))
class UnslothOnlineDPOTrainer(_UnslothOnlineDPOTrainer):
"""
Initialize OnlineDPOTrainer.
Args:
model (`transformers.PreTrainedModel` or `torch.nn.Module`):
The model to train, preferably an `AutoModelForCausalLM`.
ref_model (`transformers.PreTrainedModel` or `torch.nn.Module` or `None`):
The reference model to use for training. If None is specified, the reference model will be created from
the model.
reward_model (`transformers.PreTrainedModel` or `torch.nn.Module` or `None`):
The reward model to score completions with, preferably an `AutoModelForSequenceClassification`.
judge (`BasePairwiseJudge`):
The judge to use for pairwise comparison of model completions.
args (`OnlineDPOConfig`):
The online DPO config arguments to use for training.
data_collator (`transformers.DataCollator`):
The data collator to use for training. If None is specified, the default data collator (`DPODataCollatorWithPadding`) will be used
which will pad the sequences to the maximum length of the sequences in the batch, given a dataset of paired sequences.
train_dataset (`datasets.Dataset`):
The dataset to use for training.
eval_dataset (`datasets.Dataset`):
The dataset to use for evaluation.
processing_class (`PreTrainedTokenizerBase` or `BaseImageProcessor` or `FeatureExtractionMixin` or `ProcessorMixin`, *optional*):
Processing class used to process the data. If provided, will be used to automatically process the inputs
for the model, and it will be saved along the model to make it easier to rerun an interrupted training or
reuse the fine-tuned model.
peft_config (`dict`):
The peft config to use for training.
compute_metrics (`Callable[[EvalPrediction], dict]`, *optional*):
The function to use to compute the metrics. Must take a `EvalPrediction` and return
a dictionary string to metric values.
callbacks (`list[transformers.TrainerCallback]`):
The callbacks to use for training.
optimizers (`tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR]`):
The optimizer and scheduler to use for training.
preprocess_logits_for_metrics (`Callable[[torch.Tensor, torch.Tensor], torch.Tensor]`):
The function to use to preprocess the logits before computing the metrics.
"""
def __init__(
self,
model,
ref_model = None,
reward_model = None,
judge = None,
args = None,
data_collator = None,
train_dataset = None,
eval_dataset = None,
processing_class = None,
reward_processing_class = None,
peft_config = None,
compute_metrics = None,
callbacks = None,
preprocess_logits_for_metrics = None,
**kwargs
):
if args is None: args = UnslothOnlineDPOConfig()
use_bf16 = getattr(args, 'bf16', False)
use_fp16 = getattr(args, 'fp16', False)
force_float32 = False
if os.environ.get('UNSLOTH_FORCE_FLOAT32', '0') == '1':
print('Unsloth: Switching to float32 training since model cannot work with float16')
force_float32 = True
mixed_precision_dtype = os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32')
dtype = getattr(model.config, 'torch_dtype', None)
if dtype is None: dtype = model.get_input_embeddings().dtype
from unsloth_zoo.utils import _get_dtype
dtype = _get_dtype(dtype)
float16 = dtype == torch.float16
if not force_float32 and (float16 and use_bf16): raise TypeError('Unsloth: Model is in float16 precision but you want to use bfloat16 precision. Set fp16 to `True` and bf16 to `False`')
if not force_float32 and (not float16 and use_fp16): raise TypeError('Unsloth: Model is in bfloat16 precision but you want to use float16 precision. Set fp16 to `False` and bf16 to `True`')
if force_float32:
args.fp16 = False
args.bf16 = False
os.environ['ACCELERATE_MIXED_PRECISION'] = 'no'
elif (not use_bf16 and not use_fp16) and mixed_precision_dtype == 'float32':
args.fp16 = float16
args.bf16 = not float16
os.environ['ACCELERATE_MIXED_PRECISION'] = 'fp16' if float16 else 'bf16'
if getattr(args, 'eval_dataset', None) is not None and getattr(args, 'eval_strategy', 'no') == 'no':
args.eval_strategy = 'steps'
if getattr(args, 'eval_steps', None) is None: args.eval_steps = 0.1
ga_steps = getattr(args, 'gradient_accumulation_steps', None)
if ga_steps is not None and ga_steps > 1:
from transformers import __version__ as transformers_version
if Version(transformers_version) <= Version('4.45.2'):
print('**** Unsloth: Please use our fixed gradient_accumulation_steps by updating transformers, TRL and Unsloth!\n'
'`pip install --upgrade --no-cache-dir --force-reinstall --no-deps unsloth transformers trl unsloth_zoo`')
if getattr(args, 'eval_strategy', 'no') != 'no':
eval_bsz = getattr(args, 'per_device_eval_batch_size', 8)
if eval_bsz == 8 and args.per_device_train_batch_size < eval_bsz: args.per_device_eval_batch_size = args.per_device_train_batch_size
if getattr(args, 'eval_accumulation_steps', None) is None and ga_steps is not None: args.eval_accumulation_steps = ga_steps
fp16_full_eval = getattr(args, 'fp16_full_eval', False)
bf16_full_eval = getattr(args, 'bf16_full_eval', False)
if args.fp16 and bf16_full_eval: args.bf16_full_eval = False; args.fp16_full_eval = True
if args.bf16 and fp16_full_eval: args.bf16_full_eval = True; args.fp16_full_eval = False
if force_float32:
args.bf16_full_eval = False
args.fp16_full_eval = False
elif os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32') == 'bfloat16':
args.bf16_full_eval = True
args.fp16_full_eval = False
elif not bf16_full_eval and not fp16_full_eval:
args.bf16_full_eval = args.bf16
args.fp16_full_eval = args.fp16
_output_logits = False
if locals().get('compute_metrics', None) is not None: _output_logits = True
if locals().get('preprocess_logits_for_metrics', None) is not None: _output_logits = True
if _output_logits:
os.environ['UNSLOTH_RETURN_LOGITS'] = '1'
if 'max_seq_length' not in locals() and not hasattr(args, 'max_seq_length'):
pass
else:
model_max_seq_length = getattr(model, 'max_seq_length', None)
args_max_seq_length = getattr(args, 'max_seq_length', None)
if args_max_seq_length is None and model_max_seq_length is not None:
max_seq_length = model.max_seq_length
if hasattr(args, 'max_seq_length'): args.max_seq_length = max_seq_length
if model is not None and hasattr(model, 'for_training'):
model.for_training()
if 'tokenizer' in locals() and hasattr(tokenizer, 'padding_side'): tokenizer.padding_side = 'right'
if 'processing_class' in locals():
if hasattr(processing_class, 'padding_side'): processing_class.padding_side = 'right'
if hasattr(processing_class, 'tokenizer') and hasattr(processing_class.tokenizer, 'padding_side'): processing_class.tokenizer.padding_side = 'right'
__tokenizer = processing_class if 'processing_class' in locals() else tokenizer
from unsloth_zoo.vision_utils import UnslothVisionDataCollator
if not isinstance(data_collator, UnslothVisionDataCollator):
if isinstance(data_collator, DataCollatorForSeq2Seq) and 'labels' not in train_dataset.column_names:
data_collator = DataCollatorForLanguageModeling(__tokenizer, mlm = False)
elif isinstance(data_collator, DataCollatorForLanguageModeling) and 'labels' in train_dataset.column_names:
data_collator = DataCollatorForSeq2Seq(__tokenizer)
else:
if hasattr(args, 'remove_unused_columns'): args.remove_unused_columns = False
if hasattr(args, 'dataset_text_field'): args.dataset_text_field = ''
if hasattr(args, 'dataset_kwargs'): args.dataset_kwargs = {'skip_prepare_dataset': True}
if not isinstance(data_collator, UnslothVisionDataCollator):
if not hasattr(__tokenizer, 'pad') and hasattr(__tokenizer, 'tokenizer'):
if isinstance(data_collator, DataCollatorForSeq2Seq):
data_collator = DataCollatorForSeq2Seq(__tokenizer.tokenizer)
else:
data_collator = DataCollatorForLanguageModeling(__tokenizer.tokenizer, mlm = False)
other_metrics = []
from unsloth_zoo.logging_utils import PatchRLStatistics
PatchRLStatistics('online_dpo_trainer', other_metrics)
super().__init__(
model = model,
ref_model = ref_model,
reward_model = reward_model,
judge = judge,
args = args,
data_collator = data_collator,
train_dataset = train_dataset,
eval_dataset = eval_dataset,
processing_class = processing_class,
reward_processing_class = reward_processing_class,
peft_config = peft_config,
compute_metrics = compute_metrics,
callbacks = callbacks,
preprocess_logits_for_metrics = preprocess_logits_for_metrics,**kwargs)
if hasattr(self, 'neftune_hook_handle'):
self.neftune_hook_handle.remove()
if hasattr(self, 'neftune_hook_handle'): del self.neftune_hook_handle
if getattr(args, 'neftune_noise_alpha', None) is not None:
model.get_input_embeddings().neftune_noise_alpha = self.neftune_noise_alpha
pass
pass