|
""" |
|
2025.3.12 |
|
2025.3.14 |
|
4.48.3 |
|
0.15.2 |
|
__UNSLOTH_VERSIONING__ |
|
""" |
|
from torch import Tensor |
|
import torch |
|
import torch.nn as nn |
|
from torch.nn import functional as F |
|
from trl.trainer.reward_trainer import (Any, BaseImageProcessor, Callable, DataCollator, Dataset, EvalPrediction, FeatureExtractionMixin, FrozenInstanceError, Optional, PartialState, PeftModel, PreTrainedModel, PreTrainedTokenizerBase, ProcessorMixin, RewardConfig, RewardDataCollatorWithPadding, RewardTrainer, Trainer, TrainerCallback, Union, _tokenize, compute_accuracy, decode_and_strip_padding, defaultdict, disable_dropout_in_model, gather_object, generate_model_card, get_comet_experiment_url, inspect, is_peft_available, is_wandb_available, log_table_to_comet_experiment, maybe_apply_chat_template, nested_detach, nn, os, pd, prepare_model_for_kbit_training, print_rich_table, replace, torch, wandb, warnings) |
|
|
|
|
|
import os |
|
from typing import * |
|
from dataclasses import dataclass, field |
|
from packaging.version import Version |
|
import torch |
|
import numpy as np |
|
from contextlib import nullcontext |
|
from torch.nn import functional as F |
|
from transformers import DataCollatorForSeq2Seq, DataCollatorForLanguageModeling |
|
|
|
torch_compile_options = { |
|
"epilogue_fusion" : True, |
|
"max_autotune" : False, |
|
"shape_padding" : True, |
|
"trace.enabled" : False, |
|
"triton.cudagraphs" : False, |
|
} |
|
|
|
@torch.compile(dynamic = True, fullgraph = True, options = torch_compile_options,) |
|
def selective_log_softmax(logits, index): |
|
logits = logits.to(torch.float32) |
|
selected_logits = torch.gather(logits, dim = -1, index = index.unsqueeze(-1)).squeeze(-1) |
|
|
|
|
|
logsumexp_values = torch.logsumexp(logits, dim = -1) |
|
per_token_logps = selected_logits - logsumexp_values |
|
return per_token_logps |
|
@dataclass |
|
class UnslothRewardConfig(RewardConfig): |
|
""" |
|
|
|
Configuration class for the [`RewardTrainer`]. |
|
|
|
Using [`~transformers.HfArgumentParser`] we can turn this class into |
|
[argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the |
|
command line. |
|
|
|
Parameters: |
|
max_length (`int` or `None`, *optional*, defaults to `1024`): |
|
Maximum length of the sequences (prompt + completion) in the batch, filters out entries that exceed the |
|
limit. This argument is required if you want to use the default data collator. |
|
disable_dropout (`bool`, *optional*, defaults to `True`): |
|
Whether to disable dropout in the model. |
|
dataset_num_proc (`int`, *optional*, defaults to `None`): |
|
Number of processes to use for processing the dataset. |
|
center_rewards_coefficient (`float`, *optional*, defaults to `None`): |
|
Coefficient to incentivize the reward model to output mean-zero rewards (proposed by |
|
https://huggingface.co/papers/2312.09244, Eq. 2). Recommended value: `0.01`. |
|
remove_unused_columns (`bool`, *optional*, defaults to `False`): |
|
Whether to remove the columns that are not used by the model's forward pass. Can be `True` only if |
|
the dataset is pretokenized. |
|
|
|
""" |
|
vllm_sampling_params: Optional[Any] = field( |
|
default = None, |
|
metadata = {'help': 'vLLM SamplingParams'}, |
|
) |
|
unsloth_num_chunks : Optional[int] = field( |
|
default = -1, |
|
metadata = {'help': 'Chunk size to reduce memory usage. -1 is most efficient.'}, |
|
) |
|
def __init__( |
|
self, |
|
output_dir = None, |
|
overwrite_output_dir = None, |
|
do_train = False, |
|
do_eval = False, |
|
do_predict = False, |
|
eval_strategy = 'no', |
|
prediction_loss_only = False, |
|
per_device_train_batch_size = 4, |
|
per_device_eval_batch_size = 4, |
|
per_gpu_train_batch_size = None, |
|
per_gpu_eval_batch_size = None, |
|
gradient_accumulation_steps = 2, |
|
eval_accumulation_steps = 2, |
|
eval_delay = 0, |
|
torch_empty_cache_steps = 250, |
|
learning_rate = 5e-05, |
|
weight_decay = 0.01, |
|
adam_beta1 = 0.9, |
|
adam_beta2 = 0.999, |
|
adam_epsilon = 1e-08, |
|
max_grad_norm = 1.0, |
|
num_train_epochs = 3.0, |
|
max_steps = -1, |
|
lr_scheduler_type = 'linear', |
|
warmup_ratio = 0.1, |
|
warmup_steps = 0, |
|
log_level = 'passive', |
|
log_level_replica = 'warning', |
|
log_on_each_node = True, |
|
logging_dir = None, |
|
logging_strategy = 'steps', |
|
logging_first_step = False, |
|
logging_steps = 1, |
|
logging_nan_inf_filter = False, |
|
save_strategy = 'steps', |
|
save_steps = 500, |
|
save_total_limit = None, |
|
save_safetensors = True, |
|
save_on_each_node = False, |
|
save_only_model = False, |
|
restore_callback_states_from_checkpoint = False, |
|
no_cuda = False, |
|
use_cpu = False, |
|
use_mps_device = False, |
|
seed = 3407, |
|
data_seed = 3407, |
|
jit_mode_eval = False, |
|
use_ipex = False, |
|
bf16 = False, |
|
fp16 = False, |
|
fp16_opt_level = 'O1', |
|
half_precision_backend = 'auto', |
|
bf16_full_eval = False, |
|
fp16_full_eval = False, |
|
tf32 = None, |
|
local_rank = -1, |
|
ddp_backend = None, |
|
tpu_num_cores = None, |
|
tpu_metrics_debug = False, |
|
debug = '', |
|
dataloader_drop_last = False, |
|
eval_steps = None, |
|
dataloader_num_workers = 0, |
|
dataloader_prefetch_factor = None, |
|
past_index = -1, |
|
run_name = None, |
|
disable_tqdm = None, |
|
remove_unused_columns = False, |
|
label_names = None, |
|
load_best_model_at_end = False, |
|
metric_for_best_model = None, |
|
greater_is_better = None, |
|
ignore_data_skip = False, |
|
fsdp = '', |
|
fsdp_min_num_params = 0, |
|
fsdp_config = None, |
|
fsdp_transformer_layer_cls_to_wrap = None, |
|
accelerator_config = None, |
|
deepspeed = None, |
|
label_smoothing_factor = 0.0, |
|
optim = 'adamw_8bit', |
|
optim_args = None, |
|
adafactor = False, |
|
group_by_length = False, |
|
length_column_name = 'length', |
|
report_to = None, |
|
ddp_find_unused_parameters = None, |
|
ddp_bucket_cap_mb = None, |
|
ddp_broadcast_buffers = None, |
|
dataloader_pin_memory = True, |
|
dataloader_persistent_workers = False, |
|
skip_memory_metrics = True, |
|
use_legacy_prediction_loop = False, |
|
push_to_hub = False, |
|
resume_from_checkpoint = None, |
|
hub_model_id = None, |
|
hub_strategy = 'every_save', |
|
hub_token = None, |
|
hub_private_repo = None, |
|
hub_always_push = False, |
|
gradient_checkpointing = False, |
|
gradient_checkpointing_kwargs = None, |
|
include_inputs_for_metrics = False, |
|
eval_do_concat_batches = True, |
|
fp16_backend = 'auto', |
|
evaluation_strategy = None, |
|
push_to_hub_model_id = None, |
|
push_to_hub_organization = None, |
|
push_to_hub_token = None, |
|
mp_parameters = '', |
|
auto_find_batch_size = False, |
|
full_determinism = False, |
|
torchdynamo = None, |
|
ray_scope = 'last', |
|
ddp_timeout = 1800, |
|
torch_compile = False, |
|
torch_compile_backend = None, |
|
torch_compile_mode = None, |
|
dispatch_batches = None, |
|
split_batches = None, |
|
include_tokens_per_second = False, |
|
include_num_input_tokens_seen = False, |
|
neftune_noise_alpha = None, |
|
optim_target_modules = None, |
|
batch_eval_metrics = False, |
|
eval_on_start = False, |
|
use_liger_kernel = False, |
|
eval_use_gather_object = False, |
|
average_tokens_across_devices = False, |
|
max_length = 1024, |
|
disable_dropout = True, |
|
dataset_num_proc = None, |
|
center_rewards_coefficient = None, |
|
vllm_sampling_params = None, |
|
unsloth_num_chunks = -1, |
|
**kwargs, |
|
): |
|
if learning_rate < 1e-7: raise FloatingPointError(f'Unsloth: Your learning rate of `{learning_rate}` is too small and less than 1e-7! Consider increasing it, otherwise gradient updates will be close to 0!') |
|
if learning_rate > 1: raise OverflowError(f'Unsloth: Your learning rate of `{learning_rate}` is way too larger > 1! Consider decreasing it to 1e-1, otherwise gradient updates will explode!') |
|
if output_dir is None and save_strategy == 'steps' and save_steps == 500: |
|
output_dir = 'unsloth_training_checkpoints' |
|
save_strategy = 'no' |
|
if dataset_num_proc is None: |
|
from multiprocessing import cpu_count |
|
dataset_num_proc = cpu_count() |
|
|
|
super().__init__( |
|
output_dir = output_dir, |
|
overwrite_output_dir = overwrite_output_dir, |
|
do_train = do_train, |
|
do_eval = do_eval, |
|
do_predict = do_predict, |
|
eval_strategy = eval_strategy, |
|
prediction_loss_only = prediction_loss_only, |
|
per_device_train_batch_size = per_device_train_batch_size, |
|
per_device_eval_batch_size = per_device_eval_batch_size, |
|
per_gpu_train_batch_size = per_gpu_train_batch_size, |
|
per_gpu_eval_batch_size = per_gpu_eval_batch_size, |
|
gradient_accumulation_steps = gradient_accumulation_steps, |
|
eval_accumulation_steps = eval_accumulation_steps, |
|
eval_delay = eval_delay, |
|
torch_empty_cache_steps = torch_empty_cache_steps, |
|
learning_rate = learning_rate, |
|
weight_decay = weight_decay, |
|
adam_beta1 = adam_beta1, |
|
adam_beta2 = adam_beta2, |
|
adam_epsilon = adam_epsilon, |
|
max_grad_norm = max_grad_norm, |
|
num_train_epochs = num_train_epochs, |
|
max_steps = max_steps, |
|
lr_scheduler_type = lr_scheduler_type, |
|
warmup_ratio = warmup_ratio, |
|
warmup_steps = warmup_steps, |
|
log_level = log_level, |
|
log_level_replica = log_level_replica, |
|
log_on_each_node = log_on_each_node, |
|
logging_dir = logging_dir, |
|
logging_strategy = logging_strategy, |
|
logging_first_step = logging_first_step, |
|
logging_steps = logging_steps, |
|
logging_nan_inf_filter = logging_nan_inf_filter, |
|
save_strategy = save_strategy, |
|
save_steps = save_steps, |
|
save_total_limit = save_total_limit, |
|
save_safetensors = save_safetensors, |
|
save_on_each_node = save_on_each_node, |
|
save_only_model = save_only_model, |
|
restore_callback_states_from_checkpoint = restore_callback_states_from_checkpoint, |
|
no_cuda = no_cuda, |
|
use_cpu = use_cpu, |
|
use_mps_device = use_mps_device, |
|
seed = seed, |
|
data_seed = data_seed, |
|
jit_mode_eval = jit_mode_eval, |
|
use_ipex = use_ipex, |
|
bf16 = bf16, |
|
fp16 = fp16, |
|
fp16_opt_level = fp16_opt_level, |
|
half_precision_backend = half_precision_backend, |
|
bf16_full_eval = bf16_full_eval, |
|
fp16_full_eval = fp16_full_eval, |
|
tf32 = tf32, |
|
local_rank = local_rank, |
|
ddp_backend = ddp_backend, |
|
tpu_num_cores = tpu_num_cores, |
|
tpu_metrics_debug = tpu_metrics_debug, |
|
debug = debug, |
|
dataloader_drop_last = dataloader_drop_last, |
|
eval_steps = eval_steps, |
|
dataloader_num_workers = dataloader_num_workers, |
|
dataloader_prefetch_factor = dataloader_prefetch_factor, |
|
past_index = past_index, |
|
run_name = run_name, |
|
disable_tqdm = disable_tqdm, |
|
remove_unused_columns = remove_unused_columns, |
|
label_names = label_names, |
|
load_best_model_at_end = load_best_model_at_end, |
|
metric_for_best_model = metric_for_best_model, |
|
greater_is_better = greater_is_better, |
|
ignore_data_skip = ignore_data_skip, |
|
fsdp = fsdp, |
|
fsdp_min_num_params = fsdp_min_num_params, |
|
fsdp_config = fsdp_config, |
|
fsdp_transformer_layer_cls_to_wrap = fsdp_transformer_layer_cls_to_wrap, |
|
accelerator_config = accelerator_config, |
|
deepspeed = deepspeed, |
|
label_smoothing_factor = label_smoothing_factor, |
|
optim = optim, |
|
optim_args = optim_args, |
|
adafactor = adafactor, |
|
group_by_length = group_by_length, |
|
length_column_name = length_column_name, |
|
report_to = report_to, |
|
ddp_find_unused_parameters = ddp_find_unused_parameters, |
|
ddp_bucket_cap_mb = ddp_bucket_cap_mb, |
|
ddp_broadcast_buffers = ddp_broadcast_buffers, |
|
dataloader_pin_memory = dataloader_pin_memory, |
|
dataloader_persistent_workers = dataloader_persistent_workers, |
|
skip_memory_metrics = skip_memory_metrics, |
|
use_legacy_prediction_loop = use_legacy_prediction_loop, |
|
push_to_hub = push_to_hub, |
|
resume_from_checkpoint = resume_from_checkpoint, |
|
hub_model_id = hub_model_id, |
|
hub_strategy = hub_strategy, |
|
hub_token = hub_token, |
|
hub_private_repo = hub_private_repo, |
|
hub_always_push = hub_always_push, |
|
gradient_checkpointing = gradient_checkpointing, |
|
gradient_checkpointing_kwargs = gradient_checkpointing_kwargs, |
|
include_inputs_for_metrics = include_inputs_for_metrics, |
|
eval_do_concat_batches = eval_do_concat_batches, |
|
fp16_backend = fp16_backend, |
|
evaluation_strategy = evaluation_strategy, |
|
push_to_hub_model_id = push_to_hub_model_id, |
|
push_to_hub_organization = push_to_hub_organization, |
|
push_to_hub_token = push_to_hub_token, |
|
mp_parameters = mp_parameters, |
|
auto_find_batch_size = auto_find_batch_size, |
|
full_determinism = full_determinism, |
|
torchdynamo = torchdynamo, |
|
ray_scope = ray_scope, |
|
ddp_timeout = ddp_timeout, |
|
torch_compile = torch_compile, |
|
torch_compile_backend = torch_compile_backend, |
|
torch_compile_mode = torch_compile_mode, |
|
dispatch_batches = dispatch_batches, |
|
split_batches = split_batches, |
|
include_tokens_per_second = include_tokens_per_second, |
|
include_num_input_tokens_seen = include_num_input_tokens_seen, |
|
neftune_noise_alpha = neftune_noise_alpha, |
|
optim_target_modules = optim_target_modules, |
|
batch_eval_metrics = batch_eval_metrics, |
|
eval_on_start = eval_on_start, |
|
use_liger_kernel = use_liger_kernel, |
|
eval_use_gather_object = eval_use_gather_object, |
|
average_tokens_across_devices = average_tokens_across_devices, |
|
max_length = max_length, |
|
disable_dropout = disable_dropout, |
|
dataset_num_proc = dataset_num_proc, |
|
center_rewards_coefficient = center_rewards_coefficient,**kwargs) |
|
self.vllm_sampling_params = vllm_sampling_params |
|
self.unsloth_num_chunks = unsloth_num_chunks |
|
pass |
|
|
|
class _UnslothRewardTrainer(Trainer): |
|
_tag_names = ["trl", "reward-trainer"] |
|
|
|
def __init__( |
|
self, |
|
model: Optional[Union[PreTrainedModel, nn.Module]] = None, |
|
args: Optional[RewardConfig] = None, |
|
data_collator: Optional[DataCollator] = None, |
|
train_dataset: Optional[Dataset] = None, |
|
eval_dataset: Optional[Union[Dataset, dict[str, Dataset]]] = None, |
|
processing_class: Optional[ |
|
Union[PreTrainedTokenizerBase, BaseImageProcessor, FeatureExtractionMixin, ProcessorMixin] |
|
] = None, |
|
model_init: Optional[Callable[[], PreTrainedModel]] = None, |
|
compute_metrics: Optional[Callable[[EvalPrediction], dict]] = None, |
|
callbacks: Optional[list[TrainerCallback]] = None, |
|
optimizers: tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = ( |
|
None, |
|
None, |
|
), |
|
preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None, |
|
peft_config: Optional[dict] = None, |
|
): |
|
""" |
|
Initialize RewardTrainer. |
|
|
|
Args: |
|
model (`transformers.PreTrainedModel`): |
|
The model to train, preferably an `AutoModelForSequenceClassification`. |
|
args (`RewardConfig`): |
|
The arguments to use for training. |
|
data_collator (`transformers.DataCollator`): |
|
The data collator to use for training. If None is specified, the default data collator (`RewardDataCollatorWithPadding`) will be used |
|
which will pad the sequences to the maximum length of the sequences in the batch, given a dataset of paired sequences. |
|
train_dataset (`datasets.Dataset`): |
|
The dataset to use for training. |
|
eval_dataset (`datasets.Dataset`): |
|
The dataset to use for evaluation. |
|
processing_class (`PreTrainedTokenizerBase` or `BaseImageProcessor` or `FeatureExtractionMixin` or `ProcessorMixin`, *optional*): |
|
Processing class used to process the data. If provided, will be used to automatically process the inputs |
|
for the model, and it will be saved along the model to make it easier to rerun an interrupted training or |
|
reuse the fine-tuned model. |
|
model_init (`Callable[[], transformers.PreTrainedModel]`): |
|
The model initializer to use for training. If None is specified, the default model initializer will be used. |
|
compute_metrics (`Callable[[transformers.EvalPrediction], dict]`, *optional* defaults to `compute_accuracy`): |
|
The metrics to use for evaluation. If no metrics are specified, the default metric (`compute_accuracy`) will be used. |
|
callbacks (`list[transformers.TrainerCallback]`): |
|
The callbacks to use for training. |
|
optimizers (`tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR]`): |
|
The optimizer and scheduler to use for training. |
|
preprocess_logits_for_metrics (`Callable[[torch.Tensor, torch.Tensor], torch.Tensor]`): |
|
The function to use to preprocess the logits before computing the metrics. |
|
peft_config (`dict`, defaults to `None`): |
|
The PEFT configuration to use for training. If you pass a PEFT configuration, the model will be wrapped in a PEFT model. |
|
""" |
|
if not is_peft_available() and peft_config is not None: |
|
raise ValueError( |
|
"PEFT is not installed and you passed a `peft_config` in the trainer's kwargs, please install it to use the PEFT models" |
|
) |
|
elif is_peft_available() and peft_config is not None: |
|
if not isinstance(model, PeftModel): |
|
if getattr(model, "is_loaded_in_8bit", False) or getattr(model, "is_quantized", False): |
|
_supports_gc_kwargs = "gradient_checkpointing_kwargs" in list( |
|
inspect.signature(prepare_model_for_kbit_training).parameters |
|
) |
|
|
|
prepare_model_kwargs = {"use_gradient_checkpointing": args.gradient_checkpointing} |
|
|
|
if not _supports_gc_kwargs and args.gradient_checkpointing_kwargs is not None: |
|
warnings.warn( |
|
"You passed `gradient_checkpointing_kwargs` in the trainer's kwargs, but your peft version does not support it. " |
|
"please update to the latest version of peft to use `gradient_checkpointing_kwargs`.", |
|
UserWarning, |
|
) |
|
elif _supports_gc_kwargs and args.gradient_checkpointing_kwargs is not None: |
|
prepare_model_kwargs["gradient_checkpointing_kwargs"] = args.gradient_checkpointing_kwargs |
|
|
|
model = prepare_model_for_kbit_training(model, **prepare_model_kwargs) |
|
|
|
model = model |
|
|
|
|
|
if args.disable_dropout: |
|
disable_dropout_in_model(model) |
|
|
|
if compute_metrics is None: |
|
compute_metrics = compute_accuracy |
|
|
|
if data_collator is None: |
|
if processing_class is None: |
|
raise ValueError( |
|
"A processing_class must be specified when using the default RewardDataCollatorWithPadding" |
|
) |
|
|
|
max_length = args.max_length |
|
|
|
data_collator = RewardDataCollatorWithPadding(processing_class) |
|
|
|
if args.remove_unused_columns: |
|
try: |
|
args.remove_unused_columns = False |
|
except FrozenInstanceError: |
|
args = replace(args, remove_unused_columns=False) |
|
|
|
warnings.warn( |
|
"When using RewardDataCollatorWithPadding, you should set `remove_unused_columns=False` in your RewardConfig" |
|
" we have set it for you, but you should do it yourself in the future.", |
|
UserWarning, |
|
) |
|
|
|
self.use_reward_data_collator = True |
|
else: |
|
self.use_reward_data_collator = False |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model.warnings_issued["estimate_tokens"] = True |
|
|
|
if "input_ids_chosen" not in train_dataset.column_names: |
|
with PartialState().local_main_process_first(): |
|
fn_kwargs = {"tokenizer": processing_class} |
|
train_dataset = train_dataset.map(maybe_apply_chat_template, fn_kwargs={"tokenizer": processing_class}) |
|
train_dataset = train_dataset.map( |
|
_tokenize, |
|
batched=True, |
|
fn_kwargs=fn_kwargs, |
|
num_proc=args.dataset_num_proc, |
|
) |
|
|
|
|
|
|
|
train_dataset = train_dataset.filter( |
|
lambda x: len(x["input_ids_chosen"]) <= max_length and len(x["input_ids_rejected"]) <= max_length, |
|
num_proc=args.dataset_num_proc, |
|
) |
|
if eval_dataset is not None: |
|
eval_dataset = eval_dataset.map( |
|
maybe_apply_chat_template, fn_kwargs={"tokenizer": processing_class} |
|
) |
|
eval_dataset = eval_dataset.map( |
|
_tokenize, |
|
fn_kwargs=fn_kwargs, |
|
batched=True, |
|
num_proc=args.dataset_num_proc, |
|
) |
|
|
|
|
|
|
|
eval_dataset = eval_dataset.filter( |
|
lambda x: len(x["input_ids_chosen"]) <= max_length |
|
and len(x["input_ids_rejected"]) <= max_length, |
|
num_proc=args.dataset_num_proc, |
|
) |
|
|
|
super().__init__( |
|
model=model, |
|
args=args, |
|
data_collator=data_collator, |
|
train_dataset=train_dataset, |
|
eval_dataset=eval_dataset, |
|
processing_class=processing_class, |
|
model_init=model_init, |
|
compute_metrics=compute_metrics, |
|
callbacks=callbacks, |
|
optimizers=optimizers, |
|
preprocess_logits_for_metrics=preprocess_logits_for_metrics, |
|
) |
|
|
|
|
|
if hasattr(self.model, "add_model_tags"): |
|
self.model.add_model_tags(self._tag_names) |
|
|
|
def compute_loss( |
|
self, |
|
model: Union[PreTrainedModel, nn.Module], |
|
inputs: dict[str, Union[torch.Tensor, Any]], |
|
return_outputs=False, |
|
num_items_in_batch=None, |
|
) -> Union[torch.Tensor, tuple[torch.Tensor, dict[str, torch.Tensor]]]: |
|
rewards_chosen = model( |
|
input_ids=inputs["input_ids_chosen"], |
|
attention_mask=inputs["attention_mask_chosen"], |
|
return_dict=True, |
|
)["logits"] |
|
rewards_rejected = model( |
|
input_ids=inputs["input_ids_rejected"], |
|
attention_mask=inputs["attention_mask_rejected"], |
|
return_dict=True, |
|
)["logits"] |
|
|
|
if "margin" in inputs: |
|
loss = -nn.functional.logsigmoid(rewards_chosen - rewards_rejected - inputs["margin"]).mean() |
|
else: |
|
loss = -nn.functional.logsigmoid(rewards_chosen - rewards_rejected).mean() |
|
|
|
if self.args.center_rewards_coefficient is not None: |
|
loss += self.args.center_rewards_coefficient * torch.mean((rewards_chosen + rewards_rejected) ** 2) |
|
|
|
if return_outputs: |
|
return loss, { |
|
"rewards_chosen": rewards_chosen, |
|
"rewards_rejected": rewards_rejected, |
|
} |
|
return loss |
|
|
|
def prediction_step( |
|
self, |
|
model: Union[PreTrainedModel, nn.Module], |
|
inputs: dict[str, Union[torch.Tensor, Any]], |
|
prediction_loss_only: bool, |
|
ignore_keys: Optional[list[str]] = None, |
|
) -> tuple[Optional[torch.Tensor], Optional[torch.Tensor], Optional[torch.Tensor]]: |
|
inputs = self._prepare_inputs(inputs) |
|
if ignore_keys is None: |
|
if hasattr(self.model, "config"): |
|
ignore_keys = getattr(self.model.config, "keys_to_ignore_at_inference", []) |
|
else: |
|
ignore_keys = [] |
|
|
|
with torch.no_grad(): |
|
loss, logits_dict = self.compute_loss(model, inputs, return_outputs=True) |
|
|
|
if prediction_loss_only: |
|
return (loss, None, None) |
|
|
|
loss = loss.detach() |
|
logits = tuple(v for k, v in logits_dict.items() if k not in ignore_keys) |
|
logits = nested_detach(logits) |
|
|
|
|
|
logits = torch.stack(logits).mean(dim=2).softmax(dim=0).T |
|
|
|
labels = torch.zeros(logits.shape[0]) |
|
labels = self._prepare_inputs(labels) |
|
|
|
return loss, logits, labels |
|
|
|
def evaluate(self, *args, **kwargs): |
|
num_print_samples = kwargs.pop("num_print_samples", 4) |
|
self.visualize_samples(num_print_samples) |
|
return super().evaluate(*args, **kwargs) |
|
|
|
def visualize_samples(self, num_print_samples: int): |
|
""" |
|
Visualize the reward model logits prediction |
|
|
|
Args: |
|
num_print_samples (`int`, defaults to `4`): |
|
The number of samples to print. Set to `-1` to print all samples. |
|
""" |
|
eval_dataloader = self.get_eval_dataloader() |
|
table = defaultdict(list) |
|
for _, inputs in enumerate(eval_dataloader): |
|
_, logits, _ = self.prediction_step(self.model, inputs, prediction_loss_only=False) |
|
chosen_text = decode_and_strip_padding(inputs["input_ids_chosen"], self.processing_class) |
|
rejected_text = decode_and_strip_padding(inputs["input_ids_rejected"], self.processing_class) |
|
table["chosen_text"].extend(gather_object(chosen_text)) |
|
table["rejected_text"].extend(gather_object(rejected_text)) |
|
table["logits"].extend( |
|
gather_object([[round(inner_item, 4) for inner_item in item] for item in logits.tolist()]) |
|
) |
|
if num_print_samples >= 0 and len(table["chosen_text"]) >= num_print_samples: |
|
break |
|
df = pd.DataFrame(table) |
|
if self.accelerator.process_index == 0: |
|
print_rich_table(df[:num_print_samples]) |
|
if "wandb" in self.args.report_to: |
|
import wandb |
|
|
|
if wandb.run is not None: |
|
wandb.log({"completions": wandb.Table(dataframe=df)}) |
|
|
|
if "comet_ml" in self.args.report_to: |
|
log_table_to_comet_experiment( |
|
name="completions.csv", |
|
table=df, |
|
) |
|
|
|
def create_model_card( |
|
self, |
|
model_name: Optional[str] = None, |
|
dataset_name: Optional[str] = None, |
|
tags: Union[str, list[str], None] = None, |
|
): |
|
""" |
|
Creates a draft of a model card using the information available to the `Trainer`. |
|
|
|
Args: |
|
model_name (`str` or `None`, *optional*, defaults to `None`): |
|
Name of the model. |
|
dataset_name (`str` or `None`, *optional*, defaults to `None`): |
|
Name of the dataset used for training. |
|
tags (`str`, `list[str]` or `None`, *optional*, defaults to `None`): |
|
Tags to be associated with the model card. |
|
""" |
|
if not self.is_world_process_zero(): |
|
return |
|
|
|
if hasattr(self.model.config, "_name_or_path") and not os.path.isdir(self.model.config._name_or_path): |
|
base_model = self.model.config._name_or_path |
|
else: |
|
base_model = None |
|
|
|
tags = tags or [] |
|
if isinstance(tags, str): |
|
tags = [tags] |
|
|
|
if hasattr(self.model.config, "unsloth_version"): |
|
tags.append("unsloth") |
|
|
|
model_card = generate_model_card( |
|
base_model=base_model, |
|
model_name=model_name, |
|
hub_model_id=self.hub_model_id, |
|
dataset_name=dataset_name, |
|
tags=tags, |
|
wandb_url=wandb.run.get_url() if is_wandb_available() and wandb.run is not None else None, |
|
comet_url=get_comet_experiment_url(), |
|
trainer_name="Reward", |
|
) |
|
|
|
model_card.save(os.path.join(self.args.output_dir, "README.md")) |
|
class UnslothRewardTrainer(_UnslothRewardTrainer): |
|
""" |
|
|
|
""" |
|
def __init__( |
|
self, |
|
model = None, |
|
args = None, |
|
data_collator = None, |
|
train_dataset = None, |
|
eval_dataset = None, |
|
processing_class = None, |
|
model_init = None, |
|
compute_metrics = None, |
|
callbacks = None, |
|
preprocess_logits_for_metrics = None, |
|
peft_config = None, |
|
**kwargs |
|
): |
|
if args is None: args = UnslothRewardConfig() |
|
use_bf16 = getattr(args, 'bf16', False) |
|
use_fp16 = getattr(args, 'fp16', False) |
|
force_float32 = False |
|
if os.environ.get('UNSLOTH_FORCE_FLOAT32', '0') == '1': |
|
print('Unsloth: Switching to float32 training since model cannot work with float16') |
|
force_float32 = True |
|
mixed_precision_dtype = os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32') |
|
dtype = getattr(model.config, 'torch_dtype', None) |
|
if dtype is None: dtype = model.get_input_embeddings().dtype |
|
from unsloth_zoo.utils import _get_dtype |
|
dtype = _get_dtype(dtype) |
|
float16 = dtype == torch.float16 |
|
if not force_float32 and (float16 and use_bf16): raise TypeError('Unsloth: Model is in float16 precision but you want to use bfloat16 precision. Set fp16 to `True` and bf16 to `False`') |
|
if not force_float32 and (not float16 and use_fp16): raise TypeError('Unsloth: Model is in bfloat16 precision but you want to use float16 precision. Set fp16 to `False` and bf16 to `True`') |
|
if force_float32: |
|
args.fp16 = False |
|
args.bf16 = False |
|
os.environ['ACCELERATE_MIXED_PRECISION'] = 'no' |
|
elif (not use_bf16 and not use_fp16) and mixed_precision_dtype == 'float32': |
|
args.fp16 = float16 |
|
args.bf16 = not float16 |
|
os.environ['ACCELERATE_MIXED_PRECISION'] = 'fp16' if float16 else 'bf16' |
|
if getattr(args, 'eval_dataset', None) is not None and getattr(args, 'eval_strategy', 'no') == 'no': |
|
args.eval_strategy = 'steps' |
|
if getattr(args, 'eval_steps', None) is None: args.eval_steps = 0.1 |
|
ga_steps = getattr(args, 'gradient_accumulation_steps', None) |
|
if ga_steps is not None and ga_steps > 1: |
|
from transformers import __version__ as transformers_version |
|
if Version(transformers_version) <= Version('4.45.2'): |
|
print('**** Unsloth: Please use our fixed gradient_accumulation_steps by updating transformers, TRL and Unsloth!\n' |
|
'`pip install --upgrade --no-cache-dir --force-reinstall --no-deps unsloth transformers trl unsloth_zoo`') |
|
if getattr(args, 'eval_strategy', 'no') != 'no': |
|
eval_bsz = getattr(args, 'per_device_eval_batch_size', 8) |
|
if eval_bsz == 8 and args.per_device_train_batch_size < eval_bsz: args.per_device_eval_batch_size = args.per_device_train_batch_size |
|
if getattr(args, 'eval_accumulation_steps', None) is None and ga_steps is not None: args.eval_accumulation_steps = ga_steps |
|
fp16_full_eval = getattr(args, 'fp16_full_eval', False) |
|
bf16_full_eval = getattr(args, 'bf16_full_eval', False) |
|
if args.fp16 and bf16_full_eval: args.bf16_full_eval = False; args.fp16_full_eval = True |
|
if args.bf16 and fp16_full_eval: args.bf16_full_eval = True; args.fp16_full_eval = False |
|
if force_float32: |
|
args.bf16_full_eval = False |
|
args.fp16_full_eval = False |
|
elif os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32') == 'bfloat16': |
|
args.bf16_full_eval = True |
|
args.fp16_full_eval = False |
|
elif not bf16_full_eval and not fp16_full_eval: |
|
args.bf16_full_eval = args.bf16 |
|
args.fp16_full_eval = args.fp16 |
|
_output_logits = False |
|
if locals().get('compute_metrics', None) is not None: _output_logits = True |
|
if locals().get('preprocess_logits_for_metrics', None) is not None: _output_logits = True |
|
if _output_logits: |
|
os.environ['UNSLOTH_RETURN_LOGITS'] = '1' |
|
if 'max_seq_length' not in locals() and not hasattr(args, 'max_seq_length'): |
|
pass |
|
else: |
|
model_max_seq_length = getattr(model, 'max_seq_length', None) |
|
args_max_seq_length = getattr(args, 'max_seq_length', None) |
|
if args_max_seq_length is None and model_max_seq_length is not None: |
|
max_seq_length = model.max_seq_length |
|
if hasattr(args, 'max_seq_length'): args.max_seq_length = max_seq_length |
|
if model is not None and hasattr(model, 'for_training'): |
|
model.for_training() |
|
if 'tokenizer' in locals() and hasattr(tokenizer, 'padding_side'): tokenizer.padding_side = 'right' |
|
if 'processing_class' in locals(): |
|
if hasattr(processing_class, 'padding_side'): processing_class.padding_side = 'right' |
|
if hasattr(processing_class, 'tokenizer') and hasattr(processing_class.tokenizer, 'padding_side'): processing_class.tokenizer.padding_side = 'right' |
|
__tokenizer = processing_class if 'processing_class' in locals() else tokenizer |
|
from unsloth_zoo.vision_utils import UnslothVisionDataCollator |
|
if not isinstance(data_collator, UnslothVisionDataCollator): |
|
if isinstance(data_collator, DataCollatorForSeq2Seq) and 'labels' not in train_dataset.column_names: |
|
data_collator = DataCollatorForLanguageModeling(__tokenizer, mlm = False) |
|
elif isinstance(data_collator, DataCollatorForLanguageModeling) and 'labels' in train_dataset.column_names: |
|
data_collator = DataCollatorForSeq2Seq(__tokenizer) |
|
else: |
|
if hasattr(args, 'remove_unused_columns'): args.remove_unused_columns = False |
|
if hasattr(args, 'dataset_text_field'): args.dataset_text_field = '' |
|
if hasattr(args, 'dataset_kwargs'): args.dataset_kwargs = {'skip_prepare_dataset': True} |
|
if not isinstance(data_collator, UnslothVisionDataCollator): |
|
if not hasattr(__tokenizer, 'pad') and hasattr(__tokenizer, 'tokenizer'): |
|
if isinstance(data_collator, DataCollatorForSeq2Seq): |
|
data_collator = DataCollatorForSeq2Seq(__tokenizer.tokenizer) |
|
else: |
|
data_collator = DataCollatorForLanguageModeling(__tokenizer.tokenizer, mlm = False) |
|
other_metrics = [] |
|
|
|
from unsloth_zoo.logging_utils import PatchRLStatistics |
|
PatchRLStatistics('reward_trainer', other_metrics) |
|
|
|
super().__init__( |
|
model = model, |
|
args = args, |
|
data_collator = data_collator, |
|
train_dataset = train_dataset, |
|
eval_dataset = eval_dataset, |
|
processing_class = processing_class, |
|
model_init = model_init, |
|
compute_metrics = compute_metrics, |
|
callbacks = callbacks, |
|
preprocess_logits_for_metrics = preprocess_logits_for_metrics, |
|
peft_config = peft_config,**kwargs) |
|
if hasattr(self, 'neftune_hook_handle'): |
|
self.neftune_hook_handle.remove() |
|
if hasattr(self, 'neftune_hook_handle'): del self.neftune_hook_handle |
|
if getattr(args, 'neftune_noise_alpha', None) is not None: |
|
model.get_input_embeddings().neftune_noise_alpha = self.neftune_noise_alpha |
|
pass |
|
|
|
pass |
|
|