kevinwang676's picture
Upload folder using huggingface_hub
d5eed08 verified
"""
2025.3.12
2025.3.14
4.48.3
0.15.2
__UNSLOTH_VERSIONING__
"""
from torch import Tensor
import torch
import torch.nn as nn
from torch.nn import functional as F
from trl.trainer.xpo_trainer import (Any, BaseImageProcessor, BasePairwiseJudge, Callable, Dataset, EvalPrediction, F, FeatureExtractionMixin, IterableDataset, OnlineDPOTrainer, OptimizerNames, Optional, PreTrainedModel, PreTrainedTokenizerBase, ProcessorMixin, SIMPLE_CHAT_TEMPLATE, TrainerCallback, Union, XPOConfig, XPOTrainer, empty_cache, generate_model_card, get_comet_experiment_url, get_reward, is_conversational, is_wandb_available, jinja2, maybe_apply_chat_template, nn, os, textwrap, torch, truncate_right, unwrap_model_for_generation, wandb)
import os
from typing import *
from dataclasses import dataclass, field
from packaging.version import Version
import torch
import numpy as np
from contextlib import nullcontext
from torch.nn import functional as F
from transformers import DataCollatorForSeq2Seq, DataCollatorForLanguageModeling
torch_compile_options = {
"epilogue_fusion" : True,
"max_autotune" : False,
"shape_padding" : True,
"trace.enabled" : False,
"triton.cudagraphs" : False,
}
@torch.compile(dynamic = True, fullgraph = True, options = torch_compile_options,)
def selective_log_softmax(logits, index):
logits = logits.to(torch.float32)
selected_logits = torch.gather(logits, dim = -1, index = index.unsqueeze(-1)).squeeze(-1)
# loop to reduce peak mem consumption
# logsumexp_values = torch.stack([torch.logsumexp(lg, dim=-1) for lg in logits])
logsumexp_values = torch.logsumexp(logits, dim = -1)
per_token_logps = selected_logits - logsumexp_values # log_softmax(x_i) = x_i - logsumexp(x)
return per_token_logps
@dataclass
class UnslothXPOConfig(XPOConfig):
"""
Configuration class for the [`XPOTrainer`].
Subclass of [`OnlineDPOConfig`] we can use all its arguments and add the following:
Parameters:
alpha (`float` or `list[float]`, *optional*, defaults to `1e-5`):
Weight of the XPO loss term. If a list of floats is provided then the alpha is selected for each new epoch
and the last alpha is used for the rest of the epochs.
"""
vllm_sampling_params: Optional[Any] = field(
default = None,
metadata = {'help': 'vLLM SamplingParams'},
)
unsloth_num_chunks : Optional[int] = field(
default = -1,
metadata = {'help': 'Chunk size to reduce memory usage. -1 is most efficient.'},
)
def __init__(
self,
output_dir = None,
overwrite_output_dir = None,
do_train = False,
do_eval = False,
do_predict = False,
eval_strategy = 'no',
prediction_loss_only = False,
per_device_train_batch_size = 4,
per_device_eval_batch_size = 4,
per_gpu_train_batch_size = None,
per_gpu_eval_batch_size = None,
gradient_accumulation_steps = 2,
eval_accumulation_steps = 2,
eval_delay = 0,
torch_empty_cache_steps = 250,
learning_rate = 5e-05,
weight_decay = 0.01,
adam_beta1 = 0.9,
adam_beta2 = 0.999,
adam_epsilon = 1e-08,
max_grad_norm = 1.0,
num_train_epochs = 3.0,
max_steps = -1,
lr_scheduler_type = 'linear',
warmup_ratio = 0.1,
warmup_steps = 0,
log_level = 'passive',
log_level_replica = 'warning',
log_on_each_node = True,
logging_dir = None,
logging_strategy = 'steps',
logging_first_step = False,
logging_steps = 1,
logging_nan_inf_filter = False,
save_strategy = 'steps',
save_steps = 500,
save_total_limit = None,
save_safetensors = True,
save_on_each_node = False,
save_only_model = False,
restore_callback_states_from_checkpoint = False,
no_cuda = False,
use_cpu = False,
use_mps_device = False,
seed = 3407,
data_seed = 3407,
jit_mode_eval = False,
use_ipex = False,
bf16 = False,
fp16 = False,
fp16_opt_level = 'O1',
half_precision_backend = 'auto',
bf16_full_eval = False,
fp16_full_eval = False,
tf32 = None,
local_rank = -1,
ddp_backend = None,
tpu_num_cores = None,
tpu_metrics_debug = False,
debug = '',
dataloader_drop_last = False,
eval_steps = None,
dataloader_num_workers = 0,
dataloader_prefetch_factor = None,
past_index = -1,
run_name = None,
disable_tqdm = None,
remove_unused_columns = True,
label_names = None,
load_best_model_at_end = False,
metric_for_best_model = None,
greater_is_better = None,
ignore_data_skip = False,
fsdp = '',
fsdp_min_num_params = 0,
fsdp_config = None,
fsdp_transformer_layer_cls_to_wrap = None,
accelerator_config = None,
deepspeed = None,
label_smoothing_factor = 0.0,
optim = 'adamw_8bit',
optim_args = None,
adafactor = False,
group_by_length = False,
length_column_name = 'length',
report_to = None,
ddp_find_unused_parameters = None,
ddp_bucket_cap_mb = None,
ddp_broadcast_buffers = None,
dataloader_pin_memory = True,
dataloader_persistent_workers = False,
skip_memory_metrics = True,
use_legacy_prediction_loop = False,
push_to_hub = False,
resume_from_checkpoint = None,
hub_model_id = None,
hub_strategy = 'every_save',
hub_token = None,
hub_private_repo = None,
hub_always_push = False,
gradient_checkpointing = False,
gradient_checkpointing_kwargs = None,
include_inputs_for_metrics = False,
eval_do_concat_batches = True,
fp16_backend = 'auto',
evaluation_strategy = None,
push_to_hub_model_id = None,
push_to_hub_organization = None,
push_to_hub_token = None,
mp_parameters = '',
auto_find_batch_size = False,
full_determinism = False,
torchdynamo = None,
ray_scope = 'last',
ddp_timeout = 1800,
torch_compile = False,
torch_compile_backend = None,
torch_compile_mode = None,
dispatch_batches = None,
split_batches = None,
include_tokens_per_second = False,
include_num_input_tokens_seen = False,
neftune_noise_alpha = None,
optim_target_modules = None,
batch_eval_metrics = False,
eval_on_start = False,
use_liger_kernel = False,
eval_use_gather_object = False,
average_tokens_across_devices = False,
reward_model_path = None,
judge = None,
max_new_tokens = 64,
max_length = 512,
temperature = 0.9,
missing_eos_penalty = None,
loss_type = 'sigmoid',
dataset_num_proc = None,
disable_dropout = True,
use_vllm = False,
ds3_gather_for_generation = True,
vllm_sampling_params = None,
unsloth_num_chunks = -1,
**kwargs,
):
if learning_rate < 1e-7: raise FloatingPointError(f'Unsloth: Your learning rate of `{learning_rate}` is too small and less than 1e-7! Consider increasing it, otherwise gradient updates will be close to 0!')
if learning_rate > 1: raise OverflowError(f'Unsloth: Your learning rate of `{learning_rate}` is way too larger > 1! Consider decreasing it to 1e-1, otherwise gradient updates will explode!')
if output_dir is None and save_strategy == 'steps' and save_steps == 500:
output_dir = 'unsloth_training_checkpoints'
save_strategy = 'no'
if dataset_num_proc is None:
from multiprocessing import cpu_count
dataset_num_proc = cpu_count()
super().__init__(
output_dir = output_dir,
overwrite_output_dir = overwrite_output_dir,
do_train = do_train,
do_eval = do_eval,
do_predict = do_predict,
eval_strategy = eval_strategy,
prediction_loss_only = prediction_loss_only,
per_device_train_batch_size = per_device_train_batch_size,
per_device_eval_batch_size = per_device_eval_batch_size,
per_gpu_train_batch_size = per_gpu_train_batch_size,
per_gpu_eval_batch_size = per_gpu_eval_batch_size,
gradient_accumulation_steps = gradient_accumulation_steps,
eval_accumulation_steps = eval_accumulation_steps,
eval_delay = eval_delay,
torch_empty_cache_steps = torch_empty_cache_steps,
learning_rate = learning_rate,
weight_decay = weight_decay,
adam_beta1 = adam_beta1,
adam_beta2 = adam_beta2,
adam_epsilon = adam_epsilon,
max_grad_norm = max_grad_norm,
num_train_epochs = num_train_epochs,
max_steps = max_steps,
lr_scheduler_type = lr_scheduler_type,
warmup_ratio = warmup_ratio,
warmup_steps = warmup_steps,
log_level = log_level,
log_level_replica = log_level_replica,
log_on_each_node = log_on_each_node,
logging_dir = logging_dir,
logging_strategy = logging_strategy,
logging_first_step = logging_first_step,
logging_steps = logging_steps,
logging_nan_inf_filter = logging_nan_inf_filter,
save_strategy = save_strategy,
save_steps = save_steps,
save_total_limit = save_total_limit,
save_safetensors = save_safetensors,
save_on_each_node = save_on_each_node,
save_only_model = save_only_model,
restore_callback_states_from_checkpoint = restore_callback_states_from_checkpoint,
no_cuda = no_cuda,
use_cpu = use_cpu,
use_mps_device = use_mps_device,
seed = seed,
data_seed = data_seed,
jit_mode_eval = jit_mode_eval,
use_ipex = use_ipex,
bf16 = bf16,
fp16 = fp16,
fp16_opt_level = fp16_opt_level,
half_precision_backend = half_precision_backend,
bf16_full_eval = bf16_full_eval,
fp16_full_eval = fp16_full_eval,
tf32 = tf32,
local_rank = local_rank,
ddp_backend = ddp_backend,
tpu_num_cores = tpu_num_cores,
tpu_metrics_debug = tpu_metrics_debug,
debug = debug,
dataloader_drop_last = dataloader_drop_last,
eval_steps = eval_steps,
dataloader_num_workers = dataloader_num_workers,
dataloader_prefetch_factor = dataloader_prefetch_factor,
past_index = past_index,
run_name = run_name,
disable_tqdm = disable_tqdm,
remove_unused_columns = remove_unused_columns,
label_names = label_names,
load_best_model_at_end = load_best_model_at_end,
metric_for_best_model = metric_for_best_model,
greater_is_better = greater_is_better,
ignore_data_skip = ignore_data_skip,
fsdp = fsdp,
fsdp_min_num_params = fsdp_min_num_params,
fsdp_config = fsdp_config,
fsdp_transformer_layer_cls_to_wrap = fsdp_transformer_layer_cls_to_wrap,
accelerator_config = accelerator_config,
deepspeed = deepspeed,
label_smoothing_factor = label_smoothing_factor,
optim = optim,
optim_args = optim_args,
adafactor = adafactor,
group_by_length = group_by_length,
length_column_name = length_column_name,
report_to = report_to,
ddp_find_unused_parameters = ddp_find_unused_parameters,
ddp_bucket_cap_mb = ddp_bucket_cap_mb,
ddp_broadcast_buffers = ddp_broadcast_buffers,
dataloader_pin_memory = dataloader_pin_memory,
dataloader_persistent_workers = dataloader_persistent_workers,
skip_memory_metrics = skip_memory_metrics,
use_legacy_prediction_loop = use_legacy_prediction_loop,
push_to_hub = push_to_hub,
resume_from_checkpoint = resume_from_checkpoint,
hub_model_id = hub_model_id,
hub_strategy = hub_strategy,
hub_token = hub_token,
hub_private_repo = hub_private_repo,
hub_always_push = hub_always_push,
gradient_checkpointing = gradient_checkpointing,
gradient_checkpointing_kwargs = gradient_checkpointing_kwargs,
include_inputs_for_metrics = include_inputs_for_metrics,
eval_do_concat_batches = eval_do_concat_batches,
fp16_backend = fp16_backend,
evaluation_strategy = evaluation_strategy,
push_to_hub_model_id = push_to_hub_model_id,
push_to_hub_organization = push_to_hub_organization,
push_to_hub_token = push_to_hub_token,
mp_parameters = mp_parameters,
auto_find_batch_size = auto_find_batch_size,
full_determinism = full_determinism,
torchdynamo = torchdynamo,
ray_scope = ray_scope,
ddp_timeout = ddp_timeout,
torch_compile = torch_compile,
torch_compile_backend = torch_compile_backend,
torch_compile_mode = torch_compile_mode,
dispatch_batches = dispatch_batches,
split_batches = split_batches,
include_tokens_per_second = include_tokens_per_second,
include_num_input_tokens_seen = include_num_input_tokens_seen,
neftune_noise_alpha = neftune_noise_alpha,
optim_target_modules = optim_target_modules,
batch_eval_metrics = batch_eval_metrics,
eval_on_start = eval_on_start,
use_liger_kernel = use_liger_kernel,
eval_use_gather_object = eval_use_gather_object,
average_tokens_across_devices = average_tokens_across_devices,
reward_model_path = reward_model_path,
judge = judge,
max_new_tokens = max_new_tokens,
max_length = max_length,
temperature = temperature,
missing_eos_penalty = missing_eos_penalty,
loss_type = loss_type,
dataset_num_proc = dataset_num_proc,
disable_dropout = disable_dropout,
use_vllm = use_vllm,
ds3_gather_for_generation = ds3_gather_for_generation,**kwargs)
self.vllm_sampling_params = vllm_sampling_params
self.unsloth_num_chunks = unsloth_num_chunks
pass
class _UnslothXPOTrainer(OnlineDPOTrainer):
r""""""
_tag_names = ["trl", "xpo"]
def __init__(
self,
model: Union[PreTrainedModel, nn.Module] = None,
ref_model: Union[PreTrainedModel, nn.Module] = None,
reward_model: Optional[nn.Module] = None,
judge: Optional[BasePairwiseJudge] = None,
args: Optional[XPOConfig] = None,
data_collator: Optional[Callable] = None,
train_dataset: Optional[Union[Dataset, IterableDataset]] = None,
eval_dataset: Optional[Union[Dataset, dict[str, Dataset]]] = None,
processing_class: Optional[
Union[PreTrainedTokenizerBase, BaseImageProcessor, FeatureExtractionMixin, ProcessorMixin]
] = None,
peft_config: Optional[dict] = None,
compute_metrics: Optional[Callable[[EvalPrediction], dict]] = None,
callbacks: Optional[list[TrainerCallback]] = None,
optimizers: tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None),
preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None,
) -> None:
super().__init__(
model=model,
ref_model=ref_model,
judge=judge,
reward_model=reward_model,
args=args,
data_collator=data_collator,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
processing_class=processing_class,
reward_processing_class=processing_class, # for now, XPOTrainer can't use any reward model
peft_config=peft_config,
compute_metrics=compute_metrics,
callbacks=callbacks,
optimizers=optimizers,
preprocess_logits_for_metrics=preprocess_logits_for_metrics,
)
self._alpha = self.args.alpha
# Overwrite the stats dictionary to include XPO specific statistics
self.stats = {
# Remove "non_score_reward", "rlhf_reward", "scores"
# Add "loss/dpo", "loss/xpo"
"loss/dpo": [],
"loss/xpo": [],
"objective/kl": [],
"objective/entropy": [],
"rewards/chosen": [],
"rewards/rejected": [],
"rewards/accuracies": [],
"rewards/margins": [],
"logps/chosen": [],
"logps/rejected": [],
# Replace "contain_eos_token" by "model_contain_eos_token" and "ref_contain_eos_token"
"val/model_contain_eos_token": [],
"val/ref_contain_eos_token": [],
"alpha": [],
"beta": [],
}
if self.reward_model is not None:
# Replace "scores" by "model_scores" and "ref_scores"
self.stats["objective/model_scores"] = []
self.stats["objective/ref_scores"] = []
self.stats["objective/scores_margin"] = []
@property
def alpha(self):
if isinstance(self._alpha, list):
epoch = self.state.epoch
return self._alpha[epoch] if epoch < len(self._alpha) else self._alpha[-1]
else:
return self._alpha
def _generate_completions(self, prompts, model):
with unwrap_model_for_generation(model, self.accelerator) as unwrapped_model:
model_output = unwrapped_model.generate(
input_ids=prompts["input_ids"],
attention_mask=prompts["attention_mask"],
generation_config=self.generation_config,
)
ref_model = model if self.ref_model is None else self.ref_model
with torch.no_grad(), unwrap_model_for_generation(ref_model, self.accelerator) as unwrapped_ref_model:
ref_output = unwrapped_ref_model.generate(
input_ids=prompts["input_ids"],
attention_mask=prompts["attention_mask"],
generation_config=self.generation_config,
)
return model_output, ref_output
def _process_completions(self, model_output, ref_output, prompts):
context_length = prompts["input_ids"].shape[1]
# Process model completions
model_completion_ids = model_output[:, context_length:]
model_completion_ids, model_completion_mask = truncate_right(
model_completion_ids, self.processing_class.eos_token_id, self.processing_class.pad_token_id
)
model_data = {
"input_ids": torch.cat((prompts["input_ids"], model_completion_ids), dim=1),
"attention_mask": torch.cat((prompts["attention_mask"], model_completion_mask), dim=1),
"raw": prompts["raw"],
}
# Process reference model completions
ref_completion_ids = ref_output[:, context_length:]
ref_completion_ids, ref_completion_mask = truncate_right(
ref_completion_ids, self.processing_class.eos_token_id, self.processing_class.pad_token_id
)
ref_data = {
"input_ids": torch.cat((prompts["input_ids"], ref_completion_ids), dim=1),
"attention_mask": torch.cat((prompts["attention_mask"], ref_completion_mask), dim=1),
"raw": prompts["raw"],
}
return model_data, ref_data
def _compute_rewards(self, model_data, ref_data, context_length):
with torch.no_grad():
_, model_scores, _ = get_reward(
self.reward_model, model_data["input_ids"], self.processing_class.pad_token_id, context_length
)
_, ref_scores, _ = get_reward(
self.reward_model, ref_data["input_ids"], self.processing_class.pad_token_id, context_length
)
# Apply EOS penalty if needed
if self.args.missing_eos_penalty is not None:
model_contain_eos = torch.any(model_data["input_ids"] == self.processing_class.eos_token_id, dim=-1)
ref_contain_eos = torch.any(ref_data["input_ids"] == self.processing_class.eos_token_id, dim=-1)
model_scores[~model_contain_eos] -= self.args.missing_eos_penalty
ref_scores[~ref_contain_eos] -= self.args.missing_eos_penalty
return model_scores, ref_scores
def _compute_judge(self, model_data, ref_data, context_length):
prompts = model_data["raw"]
model_data_completions = self.processing_class.batch_decode(
model_data["input_ids"][:, context_length:], skip_special_tokens=True
)
model_data_completions = [completion.strip() for completion in model_data_completions]
ref_data_completions = self.processing_class.batch_decode(
ref_data["input_ids"][:, context_length:], skip_special_tokens=True
)
ref_data_completions = [completion.strip() for completion in ref_data_completions]
if is_conversational({"prompt": prompts[0]}):
model_data_completions = [
[{"role": "assistant", "content": completion}] for completion in model_data_completions
]
environment = jinja2.Environment()
template = environment.from_string(SIMPLE_CHAT_TEMPLATE)
prompts = [template.render(messages=message) for message in prompts]
model_data_completions = [template.render(messages=completion) for completion in model_data_completions]
ref_data_completions = [
[{"role": "assistant", "content": completion}] for completion in ref_data_completions
]
ref_data_completions = [template.render(messages=completion) for completion in ref_data_completions]
ranks_of_first_completion = self.judge.judge(
prompts,
list(zip(model_data_completions, ref_data_completions)),
)
# convert ranks to a True/False mask:
# when rank == 0, it means the first completion is the best
# when rank == 1, it means the second completion is the best
return torch.tensor([rank == 0 for rank in ranks_of_first_completion], device=model_data["input_ids"].device)
def _compute_logprobs(self, model, model_data, ref_data, context_length):
def compute_logprobs_for_data(m, data):
output = m(data["input_ids"], attention_mask=data["attention_mask"])
logits = output.logits[:, context_length - 1 : -1]
token_logprobs = selective_log_softmax(logits, data["input_ids"][:, context_length:])
return token_logprobs
# Compute logprobs for model completions
model_logprobs_model_data = compute_logprobs_for_data(model, model_data)
# Compute logprobs for model on reference completions (for XPO loss)
model_logprobs_ref_data = compute_logprobs_for_data(model, ref_data)
# Compute logprobs for reference model completions
with torch.no_grad():
if self.ref_model is None:
with model.disable_adapter():
ref_logprobs_model_data = compute_logprobs_for_data(model, model_data)
ref_logprobs_ref_data = compute_logprobs_for_data(model, ref_data)
else:
ref_logprobs_model_data = compute_logprobs_for_data(self.ref_model, model_data)
ref_logprobs_ref_data = compute_logprobs_for_data(self.ref_model, ref_data)
# Mask padding tokens
model_padding_mask = model_data["attention_mask"][:, context_length:] == 0
ref_padding_mask = ref_data["attention_mask"][:, context_length:] == 0
model_logprobs_model_data = model_logprobs_model_data.masked_fill(model_padding_mask, 0.0)
model_logprobs_ref_data = model_logprobs_ref_data.masked_fill(ref_padding_mask, 0.0)
ref_logprobs_ref_data = ref_logprobs_ref_data.masked_fill(ref_padding_mask, 0.0)
ref_logprobs_model_data = ref_logprobs_model_data.masked_fill(model_padding_mask, 0.0)
return model_logprobs_model_data, model_logprobs_ref_data, ref_logprobs_ref_data, ref_logprobs_model_data
def _compute_losses(
self,
model_logprobs_model_data,
model_logprobs_ref_data,
ref_logprobs_ref_data,
ref_logprobs_model_data,
chosen_mask,
):
# Compute log probs
model_logprobs_model_data_sum = model_logprobs_model_data.sum(1)
model_logprobs_ref_data_sum = model_logprobs_ref_data.sum(1)
ref_logprobs_ref_data_sum = ref_logprobs_ref_data.sum(1)
ref_logprobs_model_data_sum = ref_logprobs_model_data.sum(1)
chosen_model_logprobs = torch.where(chosen_mask, model_logprobs_model_data_sum, model_logprobs_ref_data_sum)
chosen_ref_logprobs = torch.where(chosen_mask, ref_logprobs_model_data_sum, ref_logprobs_ref_data_sum)
chosen_log_ratios = chosen_model_logprobs - chosen_ref_logprobs
rejected_model_logprobs = torch.where(~chosen_mask, model_logprobs_model_data_sum, model_logprobs_ref_data_sum)
rejected_ref_logprobs = torch.where(~chosen_mask, ref_logprobs_model_data_sum, ref_logprobs_ref_data_sum)
rejected_log_ratios = rejected_model_logprobs - rejected_ref_logprobs
# Compute logits as the difference between chosen and rejected log ratios
logits = chosen_log_ratios - rejected_log_ratios
if self.args.loss_type == "sigmoid":
dpo_losses = -F.logsigmoid(self.beta * logits)
elif self.args.loss_type == "ipo":
dpo_losses = (logits - 1 / (2 * self.beta)) ** 2
else:
raise NotImplementedError(f"invalid loss type {self.args.loss_type}")
# Compute XPO specific loss
xpo_losses = self.alpha * model_logprobs_ref_data_sum
# Total loss
loss = (dpo_losses + xpo_losses).mean()
return loss, dpo_losses, xpo_losses
def _log_statistics(
self,
model_data,
ref_data,
model_logprobs_model_data,
model_logprobs_ref_data,
ref_logprobs_ref_data,
ref_logprobs_model_data,
chosen_mask,
dpo_losses,
xpo_losses,
context_length,
model_scores=None,
ref_scores=None,
):
# Helper function to gather and compute mean
def gather_mean(tensor):
return self.accelerator.gather_for_metrics(tensor).mean().item()
# Log losses
self.stats["loss/dpo"].append(gather_mean(dpo_losses))
self.stats["loss/xpo"].append(gather_mean(xpo_losses))
# Log scores
if self.reward_model is not None:
self.stats["objective/model_scores"].append(gather_mean(model_scores))
self.stats["objective/ref_scores"].append(gather_mean(ref_scores))
self.stats["objective/scores_margin"].append(gather_mean(model_scores - ref_scores))
# Log logprobs
model_logprobs_model_data_sum = model_logprobs_model_data.sum(1)
model_logprobs_ref_data_sum = model_logprobs_ref_data.sum(1)
ref_logprobs_ref_data_sum = ref_logprobs_ref_data.sum(1)
ref_logprobs_model_data_sum = ref_logprobs_model_data.sum(1)
chosen_model_logprobs = torch.where(chosen_mask, model_logprobs_model_data_sum, model_logprobs_ref_data_sum)
chosen_ref_logprobs = torch.where(chosen_mask, ref_logprobs_model_data_sum, ref_logprobs_ref_data_sum)
chosen_log_ratios = chosen_model_logprobs - chosen_ref_logprobs
rejected_model_logprobs = torch.where(~chosen_mask, model_logprobs_model_data_sum, model_logprobs_ref_data_sum)
rejected_ref_logprobs = torch.where(~chosen_mask, ref_logprobs_model_data_sum, ref_logprobs_ref_data_sum)
rejected_log_ratios = rejected_model_logprobs - rejected_ref_logprobs
self.stats["logps/chosen"].append(gather_mean(chosen_model_logprobs.mean() + chosen_ref_logprobs.mean()))
self.stats["logps/rejected"].append(gather_mean(rejected_model_logprobs.mean() + rejected_ref_logprobs.mean()))
# Log rewards
# Compute various statistics
chosen_rewards = chosen_log_ratios * self.beta
rejected_rewards = rejected_log_ratios * self.beta
self.stats["rewards/chosen"].append(gather_mean(chosen_rewards.mean()))
self.stats["rewards/rejected"].append(gather_mean(rejected_rewards.mean()))
# Calculate KL divergence for model and ref data
kl_model_data = model_logprobs_model_data - ref_logprobs_model_data
kl_ref_data = model_logprobs_ref_data - ref_logprobs_ref_data
mean_kl = (kl_model_data.sum(1) + kl_ref_data.sum(1)).mean() / 2
self.stats["objective/kl"].append(gather_mean(mean_kl))
# Calculate entropy for model and ref data
entropy_model_data = -model_logprobs_model_data.sum(1)
entropy_ref_data = -model_logprobs_ref_data.sum(1)
mean_entropy = (entropy_model_data.mean() + entropy_ref_data.mean()) / 2
self.stats["objective/entropy"].append(gather_mean(mean_entropy))
# Calculate margins
margin = chosen_rewards - rejected_rewards
self.stats["rewards/margins"].append(gather_mean(margin.mean()))
# Calculate accuracy
accuracy = (margin > 0).float()
self.stats["rewards/accuracies"].append(gather_mean(accuracy.mean()))
# Log EOS token statistics
model_eos = (model_data["input_ids"][:, context_length:] == self.processing_class.eos_token_id).any(dim=1)
ref_eos = (ref_data["input_ids"][:, context_length:] == self.processing_class.eos_token_id).any(dim=1)
self.stats["val/model_contain_eos_token"].append(gather_mean(model_eos.float()))
self.stats["val/ref_contain_eos_token"].append(gather_mean(ref_eos.float()))
# Log alpha and beta
self.stats["alpha"].append(self.alpha)
self.stats["beta"].append(self.beta)
def training_step(
self, model: nn.Module, inputs: dict[str, Union[torch.Tensor, Any]], num_items_in_batch: Optional[int] = None
) -> torch.Tensor:
model.train()
# Apply chat template and tokenize the input
batch_size = len(next(iter(inputs.values())))
prompts = inputs["prompt"]
inputs = [{k: v[i] for k, v in inputs.items()} for i in range(batch_size)]
inputs = [maybe_apply_chat_template(x, self.processing_class) for x in inputs]
inputs = [self.tokenize_row(x, self.model.config.is_encoder_decoder, self.processing_class) for x in inputs]
inputs = self.data_collator(inputs)
# need the prompt_ only
inputs = self._prepare_inputs(inputs)
context_length = inputs["prompt_input_ids"].shape[1]
prompts = {
"input_ids": inputs["prompt_input_ids"],
"attention_mask": inputs["prompt_attention_mask"],
"raw": prompts,
}
del inputs
# Sample completions from both the model and the reference model
model_output, ref_output = self._generate_completions(prompts, model)
# Process model completions
model_data, ref_data = self._process_completions(model_output, ref_output, prompts)
# Compute rewards
if self.reward_model is not None:
model_scores, ref_scores = self._compute_rewards(model_data, ref_data, context_length)
chosen_mask = model_scores >= ref_scores
else:
model_scores, ref_scores = None, None
chosen_mask = self._compute_judge(model_data, ref_data, context_length)
# Compute logprobs
model_logprobs_model_data, model_logprobs_ref_data, ref_logprobs_ref_data, ref_logprobs_model_data = (
self._compute_logprobs(model, model_data, ref_data, context_length)
)
# Compute loss
loss, dpo_losses, xpo_losses = self._compute_losses(
model_logprobs_model_data,
model_logprobs_ref_data,
ref_logprobs_ref_data,
ref_logprobs_model_data,
chosen_mask,
)
# Log everything
self._log_statistics(
model_data,
ref_data,
model_logprobs_model_data.detach(),
model_logprobs_ref_data.detach(),
ref_logprobs_ref_data,
ref_logprobs_model_data,
chosen_mask,
dpo_losses.detach(),
xpo_losses.detach(),
context_length,
model_scores,
ref_scores,
)
if (
self.args.torch_empty_cache_steps is not None
and self.state.global_step % self.args.torch_empty_cache_steps == 0
):
empty_cache()
kwargs = {}
# For LOMO optimizers you need to explicitly use the learning rate
if self.args.optim in [OptimizerNames.LOMO, OptimizerNames.ADALOMO]:
kwargs["learning_rate"] = self._get_learning_rate()
if self.args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel training
if self.use_apex:
with amp.scale_loss(loss, self.optimizer) as scaled_loss:
scaled_loss.backward()
else:
self.accelerator.backward(loss, **kwargs)
return loss.detach() / self.args.gradient_accumulation_steps
def create_model_card(
self,
model_name: Optional[str] = None,
dataset_name: Optional[str] = None,
tags: Union[str, list[str], None] = None,
):
"""
Creates a draft of a model card using the information available to the `Trainer`.
Args:
model_name (`str` or `None`, *optional*, defaults to `None`):
Name of the model.
dataset_name (`str` or `None`, *optional*, defaults to `None`):
Name of the dataset used for training.
tags (`str`, `list[str]` or `None`, *optional*, defaults to `None`):
Tags to be associated with the model card.
"""
if not self.is_world_process_zero():
return
if hasattr(self.model.config, "_name_or_path") and not os.path.isdir(self.model.config._name_or_path):
base_model = self.model.config._name_or_path
else:
base_model = None
tags = tags or []
if isinstance(tags, str):
tags = [tags]
if hasattr(self.model.config, "unsloth_version"):
tags.append("unsloth")
citation = textwrap.dedent("""\
@article{jung2024binary,
title = {{Exploratory Preference Optimization: Harnessing Implicit Q*-Approximation for Sample-Efficient RLHF}},
author = {Tengyang Xie and Dylan J. Foster and Akshay Krishnamurthy and Corby Rosset and Ahmed Awadallah and Alexander Rakhlin},
year = 2024,
eprint = {arXiv:2405.21046}
}""")
model_card = generate_model_card(
base_model=base_model,
model_name=model_name,
hub_model_id=self.hub_model_id,
dataset_name=dataset_name,
tags=tags,
wandb_url=wandb.run.get_url() if is_wandb_available() and wandb.run is not None else None,
comet_url=get_comet_experiment_url(),
trainer_name="XPO",
trainer_citation=citation,
paper_title="Exploratory Preference Optimization: Harnessing Implicit Q*-Approximation for Sample-Efficient RLHF",
paper_id="2405.21046",
)
model_card.save(os.path.join(self.args.output_dir, "README.md"))
class UnslothXPOTrainer(_UnslothXPOTrainer):
"""
Initialize XPOTrainer as a subclass of [`OnlineDPOConfig`].
Args:
model (`transformers.PreTrainedModel`):
The model to train, preferably an `AutoModelForCausalLM`.
ref_model (`PreTrainedModelWrapper`):
Hugging Face transformer model with a casual language modelling head. Used for implicit reward computation and loss. If no
reference model is provided, the trainer will create a reference model with the same architecture as the model to be optimized.
reward_model (`transformers.PreTrainedModel`):
The reward model to score completions with, preferably an `AutoModelForSequenceClassification`.
judge (`BasePairwiseJudge`):
The judge to use for pairwise comparison of model completions.
args (`XPOConfig`):
The XPO config arguments to use for training.
data_collator (`transformers.DataCollator`):
The data collator to use for training. If None is specified, the default data collator (`DPODataCollatorWithPadding`) will be used
which will pad the sequences to the maximum length of the sequences in the batch, given a dataset of paired sequences.
train_dataset (`datasets.Dataset`):
The dataset to use for training.
eval_dataset (`datasets.Dataset`):
The dataset to use for evaluation.
processing_class (`PreTrainedTokenizerBase` or `BaseImageProcessor` or `FeatureExtractionMixin` or `ProcessorMixin`, *optional*):
Processing class used to process the data. If provided, will be used to automatically process the inputs
for the model, and it will be saved along the model to make it easier to rerun an interrupted training or
reuse the fine-tuned model.
peft_config (`dict`):
The peft config to use for training.
compute_metrics (`Callable[[EvalPrediction], dict]`, *optional*):
The function to use to compute the metrics. Must take a `EvalPrediction` and return
a dictionary string to metric values.
callbacks (`list[transformers.TrainerCallback]`):
The callbacks to use for training.
optimizers (`tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR]`):
The optimizer and scheduler to use for training.
preprocess_logits_for_metrics (`Callable[[torch.Tensor, torch.Tensor], torch.Tensor]`):
The function to use to preprocess the logits before computing the metrics.
"""
def __init__(
self,
model = None,
ref_model = None,
reward_model = None,
judge = None,
args = None,
data_collator = None,
train_dataset = None,
eval_dataset = None,
processing_class = None,
peft_config = None,
compute_metrics = None,
callbacks = None,
preprocess_logits_for_metrics = None,
**kwargs
):
if args is None: args = UnslothXPOConfig()
use_bf16 = getattr(args, 'bf16', False)
use_fp16 = getattr(args, 'fp16', False)
force_float32 = False
if os.environ.get('UNSLOTH_FORCE_FLOAT32', '0') == '1':
print('Unsloth: Switching to float32 training since model cannot work with float16')
force_float32 = True
mixed_precision_dtype = os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32')
dtype = getattr(model.config, 'torch_dtype', None)
if dtype is None: dtype = model.get_input_embeddings().dtype
from unsloth_zoo.utils import _get_dtype
dtype = _get_dtype(dtype)
float16 = dtype == torch.float16
if not force_float32 and (float16 and use_bf16): raise TypeError('Unsloth: Model is in float16 precision but you want to use bfloat16 precision. Set fp16 to `True` and bf16 to `False`')
if not force_float32 and (not float16 and use_fp16): raise TypeError('Unsloth: Model is in bfloat16 precision but you want to use float16 precision. Set fp16 to `False` and bf16 to `True`')
if force_float32:
args.fp16 = False
args.bf16 = False
os.environ['ACCELERATE_MIXED_PRECISION'] = 'no'
elif (not use_bf16 and not use_fp16) and mixed_precision_dtype == 'float32':
args.fp16 = float16
args.bf16 = not float16
os.environ['ACCELERATE_MIXED_PRECISION'] = 'fp16' if float16 else 'bf16'
if getattr(args, 'eval_dataset', None) is not None and getattr(args, 'eval_strategy', 'no') == 'no':
args.eval_strategy = 'steps'
if getattr(args, 'eval_steps', None) is None: args.eval_steps = 0.1
ga_steps = getattr(args, 'gradient_accumulation_steps', None)
if ga_steps is not None and ga_steps > 1:
from transformers import __version__ as transformers_version
if Version(transformers_version) <= Version('4.45.2'):
print('**** Unsloth: Please use our fixed gradient_accumulation_steps by updating transformers, TRL and Unsloth!\n'
'`pip install --upgrade --no-cache-dir --force-reinstall --no-deps unsloth transformers trl unsloth_zoo`')
if getattr(args, 'eval_strategy', 'no') != 'no':
eval_bsz = getattr(args, 'per_device_eval_batch_size', 8)
if eval_bsz == 8 and args.per_device_train_batch_size < eval_bsz: args.per_device_eval_batch_size = args.per_device_train_batch_size
if getattr(args, 'eval_accumulation_steps', None) is None and ga_steps is not None: args.eval_accumulation_steps = ga_steps
fp16_full_eval = getattr(args, 'fp16_full_eval', False)
bf16_full_eval = getattr(args, 'bf16_full_eval', False)
if args.fp16 and bf16_full_eval: args.bf16_full_eval = False; args.fp16_full_eval = True
if args.bf16 and fp16_full_eval: args.bf16_full_eval = True; args.fp16_full_eval = False
if force_float32:
args.bf16_full_eval = False
args.fp16_full_eval = False
elif os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32') == 'bfloat16':
args.bf16_full_eval = True
args.fp16_full_eval = False
elif not bf16_full_eval and not fp16_full_eval:
args.bf16_full_eval = args.bf16
args.fp16_full_eval = args.fp16
_output_logits = False
if locals().get('compute_metrics', None) is not None: _output_logits = True
if locals().get('preprocess_logits_for_metrics', None) is not None: _output_logits = True
if _output_logits:
os.environ['UNSLOTH_RETURN_LOGITS'] = '1'
if 'max_seq_length' not in locals() and not hasattr(args, 'max_seq_length'):
pass
else:
model_max_seq_length = getattr(model, 'max_seq_length', None)
args_max_seq_length = getattr(args, 'max_seq_length', None)
if args_max_seq_length is None and model_max_seq_length is not None:
max_seq_length = model.max_seq_length
if hasattr(args, 'max_seq_length'): args.max_seq_length = max_seq_length
if model is not None and hasattr(model, 'for_training'):
model.for_training()
if 'tokenizer' in locals() and hasattr(tokenizer, 'padding_side'): tokenizer.padding_side = 'right'
if 'processing_class' in locals():
if hasattr(processing_class, 'padding_side'): processing_class.padding_side = 'right'
if hasattr(processing_class, 'tokenizer') and hasattr(processing_class.tokenizer, 'padding_side'): processing_class.tokenizer.padding_side = 'right'
__tokenizer = processing_class if 'processing_class' in locals() else tokenizer
from unsloth_zoo.vision_utils import UnslothVisionDataCollator
if not isinstance(data_collator, UnslothVisionDataCollator):
if isinstance(data_collator, DataCollatorForSeq2Seq) and 'labels' not in train_dataset.column_names:
data_collator = DataCollatorForLanguageModeling(__tokenizer, mlm = False)
elif isinstance(data_collator, DataCollatorForLanguageModeling) and 'labels' in train_dataset.column_names:
data_collator = DataCollatorForSeq2Seq(__tokenizer)
else:
if hasattr(args, 'remove_unused_columns'): args.remove_unused_columns = False
if hasattr(args, 'dataset_text_field'): args.dataset_text_field = ''
if hasattr(args, 'dataset_kwargs'): args.dataset_kwargs = {'skip_prepare_dataset': True}
if not isinstance(data_collator, UnslothVisionDataCollator):
if not hasattr(__tokenizer, 'pad') and hasattr(__tokenizer, 'tokenizer'):
if isinstance(data_collator, DataCollatorForSeq2Seq):
data_collator = DataCollatorForSeq2Seq(__tokenizer.tokenizer)
else:
data_collator = DataCollatorForLanguageModeling(__tokenizer.tokenizer, mlm = False)
other_metrics = []
from unsloth_zoo.logging_utils import PatchRLStatistics
PatchRLStatistics('xpo_trainer', other_metrics)
super().__init__(
model = model,
ref_model = ref_model,
reward_model = reward_model,
judge = judge,
args = args,
data_collator = data_collator,
train_dataset = train_dataset,
eval_dataset = eval_dataset,
processing_class = processing_class,
peft_config = peft_config,
compute_metrics = compute_metrics,
callbacks = callbacks,
preprocess_logits_for_metrics = preprocess_logits_for_metrics,**kwargs)
if hasattr(self, 'neftune_hook_handle'):
self.neftune_hook_handle.remove()
if hasattr(self, 'neftune_hook_handle'): del self.neftune_hook_handle
if getattr(args, 'neftune_noise_alpha', None) is not None:
model.get_input_embeddings().neftune_noise_alpha = self.neftune_noise_alpha
pass
pass