|
""" |
|
2025.3.12 |
|
2025.3.14 |
|
4.48.3 |
|
0.15.2 |
|
__UNSLOTH_VERSIONING__ |
|
""" |
|
from torch import Tensor |
|
import torch |
|
import torch.nn as nn |
|
from torch.nn import functional as F |
|
from trl.trainer.xpo_trainer import (Any, BaseImageProcessor, BasePairwiseJudge, Callable, Dataset, EvalPrediction, F, FeatureExtractionMixin, IterableDataset, OnlineDPOTrainer, OptimizerNames, Optional, PreTrainedModel, PreTrainedTokenizerBase, ProcessorMixin, SIMPLE_CHAT_TEMPLATE, TrainerCallback, Union, XPOConfig, XPOTrainer, empty_cache, generate_model_card, get_comet_experiment_url, get_reward, is_conversational, is_wandb_available, jinja2, maybe_apply_chat_template, nn, os, textwrap, torch, truncate_right, unwrap_model_for_generation, wandb) |
|
|
|
|
|
import os |
|
from typing import * |
|
from dataclasses import dataclass, field |
|
from packaging.version import Version |
|
import torch |
|
import numpy as np |
|
from contextlib import nullcontext |
|
from torch.nn import functional as F |
|
from transformers import DataCollatorForSeq2Seq, DataCollatorForLanguageModeling |
|
|
|
torch_compile_options = { |
|
"epilogue_fusion" : True, |
|
"max_autotune" : False, |
|
"shape_padding" : True, |
|
"trace.enabled" : False, |
|
"triton.cudagraphs" : False, |
|
} |
|
|
|
@torch.compile(dynamic = True, fullgraph = True, options = torch_compile_options,) |
|
def selective_log_softmax(logits, index): |
|
logits = logits.to(torch.float32) |
|
selected_logits = torch.gather(logits, dim = -1, index = index.unsqueeze(-1)).squeeze(-1) |
|
|
|
|
|
logsumexp_values = torch.logsumexp(logits, dim = -1) |
|
per_token_logps = selected_logits - logsumexp_values |
|
return per_token_logps |
|
@dataclass |
|
class UnslothXPOConfig(XPOConfig): |
|
""" |
|
|
|
Configuration class for the [`XPOTrainer`]. |
|
|
|
Subclass of [`OnlineDPOConfig`] we can use all its arguments and add the following: |
|
|
|
Parameters: |
|
alpha (`float` or `list[float]`, *optional*, defaults to `1e-5`): |
|
Weight of the XPO loss term. If a list of floats is provided then the alpha is selected for each new epoch |
|
and the last alpha is used for the rest of the epochs. |
|
|
|
""" |
|
vllm_sampling_params: Optional[Any] = field( |
|
default = None, |
|
metadata = {'help': 'vLLM SamplingParams'}, |
|
) |
|
unsloth_num_chunks : Optional[int] = field( |
|
default = -1, |
|
metadata = {'help': 'Chunk size to reduce memory usage. -1 is most efficient.'}, |
|
) |
|
def __init__( |
|
self, |
|
output_dir = None, |
|
overwrite_output_dir = None, |
|
do_train = False, |
|
do_eval = False, |
|
do_predict = False, |
|
eval_strategy = 'no', |
|
prediction_loss_only = False, |
|
per_device_train_batch_size = 4, |
|
per_device_eval_batch_size = 4, |
|
per_gpu_train_batch_size = None, |
|
per_gpu_eval_batch_size = None, |
|
gradient_accumulation_steps = 2, |
|
eval_accumulation_steps = 2, |
|
eval_delay = 0, |
|
torch_empty_cache_steps = 250, |
|
learning_rate = 5e-05, |
|
weight_decay = 0.01, |
|
adam_beta1 = 0.9, |
|
adam_beta2 = 0.999, |
|
adam_epsilon = 1e-08, |
|
max_grad_norm = 1.0, |
|
num_train_epochs = 3.0, |
|
max_steps = -1, |
|
lr_scheduler_type = 'linear', |
|
warmup_ratio = 0.1, |
|
warmup_steps = 0, |
|
log_level = 'passive', |
|
log_level_replica = 'warning', |
|
log_on_each_node = True, |
|
logging_dir = None, |
|
logging_strategy = 'steps', |
|
logging_first_step = False, |
|
logging_steps = 1, |
|
logging_nan_inf_filter = False, |
|
save_strategy = 'steps', |
|
save_steps = 500, |
|
save_total_limit = None, |
|
save_safetensors = True, |
|
save_on_each_node = False, |
|
save_only_model = False, |
|
restore_callback_states_from_checkpoint = False, |
|
no_cuda = False, |
|
use_cpu = False, |
|
use_mps_device = False, |
|
seed = 3407, |
|
data_seed = 3407, |
|
jit_mode_eval = False, |
|
use_ipex = False, |
|
bf16 = False, |
|
fp16 = False, |
|
fp16_opt_level = 'O1', |
|
half_precision_backend = 'auto', |
|
bf16_full_eval = False, |
|
fp16_full_eval = False, |
|
tf32 = None, |
|
local_rank = -1, |
|
ddp_backend = None, |
|
tpu_num_cores = None, |
|
tpu_metrics_debug = False, |
|
debug = '', |
|
dataloader_drop_last = False, |
|
eval_steps = None, |
|
dataloader_num_workers = 0, |
|
dataloader_prefetch_factor = None, |
|
past_index = -1, |
|
run_name = None, |
|
disable_tqdm = None, |
|
remove_unused_columns = True, |
|
label_names = None, |
|
load_best_model_at_end = False, |
|
metric_for_best_model = None, |
|
greater_is_better = None, |
|
ignore_data_skip = False, |
|
fsdp = '', |
|
fsdp_min_num_params = 0, |
|
fsdp_config = None, |
|
fsdp_transformer_layer_cls_to_wrap = None, |
|
accelerator_config = None, |
|
deepspeed = None, |
|
label_smoothing_factor = 0.0, |
|
optim = 'adamw_8bit', |
|
optim_args = None, |
|
adafactor = False, |
|
group_by_length = False, |
|
length_column_name = 'length', |
|
report_to = None, |
|
ddp_find_unused_parameters = None, |
|
ddp_bucket_cap_mb = None, |
|
ddp_broadcast_buffers = None, |
|
dataloader_pin_memory = True, |
|
dataloader_persistent_workers = False, |
|
skip_memory_metrics = True, |
|
use_legacy_prediction_loop = False, |
|
push_to_hub = False, |
|
resume_from_checkpoint = None, |
|
hub_model_id = None, |
|
hub_strategy = 'every_save', |
|
hub_token = None, |
|
hub_private_repo = None, |
|
hub_always_push = False, |
|
gradient_checkpointing = False, |
|
gradient_checkpointing_kwargs = None, |
|
include_inputs_for_metrics = False, |
|
eval_do_concat_batches = True, |
|
fp16_backend = 'auto', |
|
evaluation_strategy = None, |
|
push_to_hub_model_id = None, |
|
push_to_hub_organization = None, |
|
push_to_hub_token = None, |
|
mp_parameters = '', |
|
auto_find_batch_size = False, |
|
full_determinism = False, |
|
torchdynamo = None, |
|
ray_scope = 'last', |
|
ddp_timeout = 1800, |
|
torch_compile = False, |
|
torch_compile_backend = None, |
|
torch_compile_mode = None, |
|
dispatch_batches = None, |
|
split_batches = None, |
|
include_tokens_per_second = False, |
|
include_num_input_tokens_seen = False, |
|
neftune_noise_alpha = None, |
|
optim_target_modules = None, |
|
batch_eval_metrics = False, |
|
eval_on_start = False, |
|
use_liger_kernel = False, |
|
eval_use_gather_object = False, |
|
average_tokens_across_devices = False, |
|
reward_model_path = None, |
|
judge = None, |
|
max_new_tokens = 64, |
|
max_length = 512, |
|
temperature = 0.9, |
|
missing_eos_penalty = None, |
|
loss_type = 'sigmoid', |
|
dataset_num_proc = None, |
|
disable_dropout = True, |
|
use_vllm = False, |
|
ds3_gather_for_generation = True, |
|
vllm_sampling_params = None, |
|
unsloth_num_chunks = -1, |
|
**kwargs, |
|
): |
|
if learning_rate < 1e-7: raise FloatingPointError(f'Unsloth: Your learning rate of `{learning_rate}` is too small and less than 1e-7! Consider increasing it, otherwise gradient updates will be close to 0!') |
|
if learning_rate > 1: raise OverflowError(f'Unsloth: Your learning rate of `{learning_rate}` is way too larger > 1! Consider decreasing it to 1e-1, otherwise gradient updates will explode!') |
|
if output_dir is None and save_strategy == 'steps' and save_steps == 500: |
|
output_dir = 'unsloth_training_checkpoints' |
|
save_strategy = 'no' |
|
if dataset_num_proc is None: |
|
from multiprocessing import cpu_count |
|
dataset_num_proc = cpu_count() |
|
|
|
super().__init__( |
|
output_dir = output_dir, |
|
overwrite_output_dir = overwrite_output_dir, |
|
do_train = do_train, |
|
do_eval = do_eval, |
|
do_predict = do_predict, |
|
eval_strategy = eval_strategy, |
|
prediction_loss_only = prediction_loss_only, |
|
per_device_train_batch_size = per_device_train_batch_size, |
|
per_device_eval_batch_size = per_device_eval_batch_size, |
|
per_gpu_train_batch_size = per_gpu_train_batch_size, |
|
per_gpu_eval_batch_size = per_gpu_eval_batch_size, |
|
gradient_accumulation_steps = gradient_accumulation_steps, |
|
eval_accumulation_steps = eval_accumulation_steps, |
|
eval_delay = eval_delay, |
|
torch_empty_cache_steps = torch_empty_cache_steps, |
|
learning_rate = learning_rate, |
|
weight_decay = weight_decay, |
|
adam_beta1 = adam_beta1, |
|
adam_beta2 = adam_beta2, |
|
adam_epsilon = adam_epsilon, |
|
max_grad_norm = max_grad_norm, |
|
num_train_epochs = num_train_epochs, |
|
max_steps = max_steps, |
|
lr_scheduler_type = lr_scheduler_type, |
|
warmup_ratio = warmup_ratio, |
|
warmup_steps = warmup_steps, |
|
log_level = log_level, |
|
log_level_replica = log_level_replica, |
|
log_on_each_node = log_on_each_node, |
|
logging_dir = logging_dir, |
|
logging_strategy = logging_strategy, |
|
logging_first_step = logging_first_step, |
|
logging_steps = logging_steps, |
|
logging_nan_inf_filter = logging_nan_inf_filter, |
|
save_strategy = save_strategy, |
|
save_steps = save_steps, |
|
save_total_limit = save_total_limit, |
|
save_safetensors = save_safetensors, |
|
save_on_each_node = save_on_each_node, |
|
save_only_model = save_only_model, |
|
restore_callback_states_from_checkpoint = restore_callback_states_from_checkpoint, |
|
no_cuda = no_cuda, |
|
use_cpu = use_cpu, |
|
use_mps_device = use_mps_device, |
|
seed = seed, |
|
data_seed = data_seed, |
|
jit_mode_eval = jit_mode_eval, |
|
use_ipex = use_ipex, |
|
bf16 = bf16, |
|
fp16 = fp16, |
|
fp16_opt_level = fp16_opt_level, |
|
half_precision_backend = half_precision_backend, |
|
bf16_full_eval = bf16_full_eval, |
|
fp16_full_eval = fp16_full_eval, |
|
tf32 = tf32, |
|
local_rank = local_rank, |
|
ddp_backend = ddp_backend, |
|
tpu_num_cores = tpu_num_cores, |
|
tpu_metrics_debug = tpu_metrics_debug, |
|
debug = debug, |
|
dataloader_drop_last = dataloader_drop_last, |
|
eval_steps = eval_steps, |
|
dataloader_num_workers = dataloader_num_workers, |
|
dataloader_prefetch_factor = dataloader_prefetch_factor, |
|
past_index = past_index, |
|
run_name = run_name, |
|
disable_tqdm = disable_tqdm, |
|
remove_unused_columns = remove_unused_columns, |
|
label_names = label_names, |
|
load_best_model_at_end = load_best_model_at_end, |
|
metric_for_best_model = metric_for_best_model, |
|
greater_is_better = greater_is_better, |
|
ignore_data_skip = ignore_data_skip, |
|
fsdp = fsdp, |
|
fsdp_min_num_params = fsdp_min_num_params, |
|
fsdp_config = fsdp_config, |
|
fsdp_transformer_layer_cls_to_wrap = fsdp_transformer_layer_cls_to_wrap, |
|
accelerator_config = accelerator_config, |
|
deepspeed = deepspeed, |
|
label_smoothing_factor = label_smoothing_factor, |
|
optim = optim, |
|
optim_args = optim_args, |
|
adafactor = adafactor, |
|
group_by_length = group_by_length, |
|
length_column_name = length_column_name, |
|
report_to = report_to, |
|
ddp_find_unused_parameters = ddp_find_unused_parameters, |
|
ddp_bucket_cap_mb = ddp_bucket_cap_mb, |
|
ddp_broadcast_buffers = ddp_broadcast_buffers, |
|
dataloader_pin_memory = dataloader_pin_memory, |
|
dataloader_persistent_workers = dataloader_persistent_workers, |
|
skip_memory_metrics = skip_memory_metrics, |
|
use_legacy_prediction_loop = use_legacy_prediction_loop, |
|
push_to_hub = push_to_hub, |
|
resume_from_checkpoint = resume_from_checkpoint, |
|
hub_model_id = hub_model_id, |
|
hub_strategy = hub_strategy, |
|
hub_token = hub_token, |
|
hub_private_repo = hub_private_repo, |
|
hub_always_push = hub_always_push, |
|
gradient_checkpointing = gradient_checkpointing, |
|
gradient_checkpointing_kwargs = gradient_checkpointing_kwargs, |
|
include_inputs_for_metrics = include_inputs_for_metrics, |
|
eval_do_concat_batches = eval_do_concat_batches, |
|
fp16_backend = fp16_backend, |
|
evaluation_strategy = evaluation_strategy, |
|
push_to_hub_model_id = push_to_hub_model_id, |
|
push_to_hub_organization = push_to_hub_organization, |
|
push_to_hub_token = push_to_hub_token, |
|
mp_parameters = mp_parameters, |
|
auto_find_batch_size = auto_find_batch_size, |
|
full_determinism = full_determinism, |
|
torchdynamo = torchdynamo, |
|
ray_scope = ray_scope, |
|
ddp_timeout = ddp_timeout, |
|
torch_compile = torch_compile, |
|
torch_compile_backend = torch_compile_backend, |
|
torch_compile_mode = torch_compile_mode, |
|
dispatch_batches = dispatch_batches, |
|
split_batches = split_batches, |
|
include_tokens_per_second = include_tokens_per_second, |
|
include_num_input_tokens_seen = include_num_input_tokens_seen, |
|
neftune_noise_alpha = neftune_noise_alpha, |
|
optim_target_modules = optim_target_modules, |
|
batch_eval_metrics = batch_eval_metrics, |
|
eval_on_start = eval_on_start, |
|
use_liger_kernel = use_liger_kernel, |
|
eval_use_gather_object = eval_use_gather_object, |
|
average_tokens_across_devices = average_tokens_across_devices, |
|
reward_model_path = reward_model_path, |
|
judge = judge, |
|
max_new_tokens = max_new_tokens, |
|
max_length = max_length, |
|
temperature = temperature, |
|
missing_eos_penalty = missing_eos_penalty, |
|
loss_type = loss_type, |
|
dataset_num_proc = dataset_num_proc, |
|
disable_dropout = disable_dropout, |
|
use_vllm = use_vllm, |
|
ds3_gather_for_generation = ds3_gather_for_generation,**kwargs) |
|
self.vllm_sampling_params = vllm_sampling_params |
|
self.unsloth_num_chunks = unsloth_num_chunks |
|
pass |
|
|
|
class _UnslothXPOTrainer(OnlineDPOTrainer): |
|
r"""""" |
|
|
|
_tag_names = ["trl", "xpo"] |
|
|
|
def __init__( |
|
self, |
|
model: Union[PreTrainedModel, nn.Module] = None, |
|
ref_model: Union[PreTrainedModel, nn.Module] = None, |
|
reward_model: Optional[nn.Module] = None, |
|
judge: Optional[BasePairwiseJudge] = None, |
|
args: Optional[XPOConfig] = None, |
|
data_collator: Optional[Callable] = None, |
|
train_dataset: Optional[Union[Dataset, IterableDataset]] = None, |
|
eval_dataset: Optional[Union[Dataset, dict[str, Dataset]]] = None, |
|
processing_class: Optional[ |
|
Union[PreTrainedTokenizerBase, BaseImageProcessor, FeatureExtractionMixin, ProcessorMixin] |
|
] = None, |
|
peft_config: Optional[dict] = None, |
|
compute_metrics: Optional[Callable[[EvalPrediction], dict]] = None, |
|
callbacks: Optional[list[TrainerCallback]] = None, |
|
optimizers: tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None), |
|
preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None, |
|
) -> None: |
|
super().__init__( |
|
model=model, |
|
ref_model=ref_model, |
|
judge=judge, |
|
reward_model=reward_model, |
|
args=args, |
|
data_collator=data_collator, |
|
train_dataset=train_dataset, |
|
eval_dataset=eval_dataset, |
|
processing_class=processing_class, |
|
reward_processing_class=processing_class, |
|
peft_config=peft_config, |
|
compute_metrics=compute_metrics, |
|
callbacks=callbacks, |
|
optimizers=optimizers, |
|
preprocess_logits_for_metrics=preprocess_logits_for_metrics, |
|
) |
|
|
|
self._alpha = self.args.alpha |
|
|
|
|
|
self.stats = { |
|
|
|
|
|
"loss/dpo": [], |
|
"loss/xpo": [], |
|
"objective/kl": [], |
|
"objective/entropy": [], |
|
"rewards/chosen": [], |
|
"rewards/rejected": [], |
|
"rewards/accuracies": [], |
|
"rewards/margins": [], |
|
"logps/chosen": [], |
|
"logps/rejected": [], |
|
|
|
"val/model_contain_eos_token": [], |
|
"val/ref_contain_eos_token": [], |
|
"alpha": [], |
|
"beta": [], |
|
} |
|
if self.reward_model is not None: |
|
|
|
self.stats["objective/model_scores"] = [] |
|
self.stats["objective/ref_scores"] = [] |
|
self.stats["objective/scores_margin"] = [] |
|
|
|
@property |
|
def alpha(self): |
|
if isinstance(self._alpha, list): |
|
epoch = self.state.epoch |
|
return self._alpha[epoch] if epoch < len(self._alpha) else self._alpha[-1] |
|
else: |
|
return self._alpha |
|
|
|
def _generate_completions(self, prompts, model): |
|
with unwrap_model_for_generation(model, self.accelerator) as unwrapped_model: |
|
model_output = unwrapped_model.generate( |
|
input_ids=prompts["input_ids"], |
|
attention_mask=prompts["attention_mask"], |
|
generation_config=self.generation_config, |
|
) |
|
|
|
ref_model = model if self.ref_model is None else self.ref_model |
|
with torch.no_grad(), unwrap_model_for_generation(ref_model, self.accelerator) as unwrapped_ref_model: |
|
ref_output = unwrapped_ref_model.generate( |
|
input_ids=prompts["input_ids"], |
|
attention_mask=prompts["attention_mask"], |
|
generation_config=self.generation_config, |
|
) |
|
|
|
return model_output, ref_output |
|
|
|
def _process_completions(self, model_output, ref_output, prompts): |
|
context_length = prompts["input_ids"].shape[1] |
|
|
|
|
|
model_completion_ids = model_output[:, context_length:] |
|
model_completion_ids, model_completion_mask = truncate_right( |
|
model_completion_ids, self.processing_class.eos_token_id, self.processing_class.pad_token_id |
|
) |
|
model_data = { |
|
"input_ids": torch.cat((prompts["input_ids"], model_completion_ids), dim=1), |
|
"attention_mask": torch.cat((prompts["attention_mask"], model_completion_mask), dim=1), |
|
"raw": prompts["raw"], |
|
} |
|
|
|
|
|
ref_completion_ids = ref_output[:, context_length:] |
|
ref_completion_ids, ref_completion_mask = truncate_right( |
|
ref_completion_ids, self.processing_class.eos_token_id, self.processing_class.pad_token_id |
|
) |
|
ref_data = { |
|
"input_ids": torch.cat((prompts["input_ids"], ref_completion_ids), dim=1), |
|
"attention_mask": torch.cat((prompts["attention_mask"], ref_completion_mask), dim=1), |
|
"raw": prompts["raw"], |
|
} |
|
|
|
return model_data, ref_data |
|
|
|
def _compute_rewards(self, model_data, ref_data, context_length): |
|
with torch.no_grad(): |
|
_, model_scores, _ = get_reward( |
|
self.reward_model, model_data["input_ids"], self.processing_class.pad_token_id, context_length |
|
) |
|
_, ref_scores, _ = get_reward( |
|
self.reward_model, ref_data["input_ids"], self.processing_class.pad_token_id, context_length |
|
) |
|
|
|
|
|
if self.args.missing_eos_penalty is not None: |
|
model_contain_eos = torch.any(model_data["input_ids"] == self.processing_class.eos_token_id, dim=-1) |
|
ref_contain_eos = torch.any(ref_data["input_ids"] == self.processing_class.eos_token_id, dim=-1) |
|
model_scores[~model_contain_eos] -= self.args.missing_eos_penalty |
|
ref_scores[~ref_contain_eos] -= self.args.missing_eos_penalty |
|
|
|
return model_scores, ref_scores |
|
|
|
def _compute_judge(self, model_data, ref_data, context_length): |
|
prompts = model_data["raw"] |
|
model_data_completions = self.processing_class.batch_decode( |
|
model_data["input_ids"][:, context_length:], skip_special_tokens=True |
|
) |
|
model_data_completions = [completion.strip() for completion in model_data_completions] |
|
|
|
ref_data_completions = self.processing_class.batch_decode( |
|
ref_data["input_ids"][:, context_length:], skip_special_tokens=True |
|
) |
|
ref_data_completions = [completion.strip() for completion in ref_data_completions] |
|
|
|
if is_conversational({"prompt": prompts[0]}): |
|
model_data_completions = [ |
|
[{"role": "assistant", "content": completion}] for completion in model_data_completions |
|
] |
|
environment = jinja2.Environment() |
|
template = environment.from_string(SIMPLE_CHAT_TEMPLATE) |
|
prompts = [template.render(messages=message) for message in prompts] |
|
model_data_completions = [template.render(messages=completion) for completion in model_data_completions] |
|
|
|
ref_data_completions = [ |
|
[{"role": "assistant", "content": completion}] for completion in ref_data_completions |
|
] |
|
ref_data_completions = [template.render(messages=completion) for completion in ref_data_completions] |
|
|
|
ranks_of_first_completion = self.judge.judge( |
|
prompts, |
|
list(zip(model_data_completions, ref_data_completions)), |
|
) |
|
|
|
|
|
|
|
return torch.tensor([rank == 0 for rank in ranks_of_first_completion], device=model_data["input_ids"].device) |
|
|
|
def _compute_logprobs(self, model, model_data, ref_data, context_length): |
|
def compute_logprobs_for_data(m, data): |
|
output = m(data["input_ids"], attention_mask=data["attention_mask"]) |
|
logits = output.logits[:, context_length - 1 : -1] |
|
token_logprobs = selective_log_softmax(logits, data["input_ids"][:, context_length:]) |
|
return token_logprobs |
|
|
|
|
|
model_logprobs_model_data = compute_logprobs_for_data(model, model_data) |
|
|
|
model_logprobs_ref_data = compute_logprobs_for_data(model, ref_data) |
|
|
|
|
|
with torch.no_grad(): |
|
if self.ref_model is None: |
|
with model.disable_adapter(): |
|
ref_logprobs_model_data = compute_logprobs_for_data(model, model_data) |
|
ref_logprobs_ref_data = compute_logprobs_for_data(model, ref_data) |
|
else: |
|
ref_logprobs_model_data = compute_logprobs_for_data(self.ref_model, model_data) |
|
ref_logprobs_ref_data = compute_logprobs_for_data(self.ref_model, ref_data) |
|
|
|
|
|
model_padding_mask = model_data["attention_mask"][:, context_length:] == 0 |
|
ref_padding_mask = ref_data["attention_mask"][:, context_length:] == 0 |
|
model_logprobs_model_data = model_logprobs_model_data.masked_fill(model_padding_mask, 0.0) |
|
model_logprobs_ref_data = model_logprobs_ref_data.masked_fill(ref_padding_mask, 0.0) |
|
ref_logprobs_ref_data = ref_logprobs_ref_data.masked_fill(ref_padding_mask, 0.0) |
|
ref_logprobs_model_data = ref_logprobs_model_data.masked_fill(model_padding_mask, 0.0) |
|
|
|
return model_logprobs_model_data, model_logprobs_ref_data, ref_logprobs_ref_data, ref_logprobs_model_data |
|
|
|
def _compute_losses( |
|
self, |
|
model_logprobs_model_data, |
|
model_logprobs_ref_data, |
|
ref_logprobs_ref_data, |
|
ref_logprobs_model_data, |
|
chosen_mask, |
|
): |
|
|
|
model_logprobs_model_data_sum = model_logprobs_model_data.sum(1) |
|
model_logprobs_ref_data_sum = model_logprobs_ref_data.sum(1) |
|
ref_logprobs_ref_data_sum = ref_logprobs_ref_data.sum(1) |
|
ref_logprobs_model_data_sum = ref_logprobs_model_data.sum(1) |
|
|
|
chosen_model_logprobs = torch.where(chosen_mask, model_logprobs_model_data_sum, model_logprobs_ref_data_sum) |
|
chosen_ref_logprobs = torch.where(chosen_mask, ref_logprobs_model_data_sum, ref_logprobs_ref_data_sum) |
|
chosen_log_ratios = chosen_model_logprobs - chosen_ref_logprobs |
|
|
|
rejected_model_logprobs = torch.where(~chosen_mask, model_logprobs_model_data_sum, model_logprobs_ref_data_sum) |
|
rejected_ref_logprobs = torch.where(~chosen_mask, ref_logprobs_model_data_sum, ref_logprobs_ref_data_sum) |
|
rejected_log_ratios = rejected_model_logprobs - rejected_ref_logprobs |
|
|
|
|
|
logits = chosen_log_ratios - rejected_log_ratios |
|
|
|
if self.args.loss_type == "sigmoid": |
|
dpo_losses = -F.logsigmoid(self.beta * logits) |
|
elif self.args.loss_type == "ipo": |
|
dpo_losses = (logits - 1 / (2 * self.beta)) ** 2 |
|
else: |
|
raise NotImplementedError(f"invalid loss type {self.args.loss_type}") |
|
|
|
|
|
xpo_losses = self.alpha * model_logprobs_ref_data_sum |
|
|
|
|
|
loss = (dpo_losses + xpo_losses).mean() |
|
|
|
return loss, dpo_losses, xpo_losses |
|
|
|
def _log_statistics( |
|
self, |
|
model_data, |
|
ref_data, |
|
model_logprobs_model_data, |
|
model_logprobs_ref_data, |
|
ref_logprobs_ref_data, |
|
ref_logprobs_model_data, |
|
chosen_mask, |
|
dpo_losses, |
|
xpo_losses, |
|
context_length, |
|
model_scores=None, |
|
ref_scores=None, |
|
): |
|
|
|
def gather_mean(tensor): |
|
return self.accelerator.gather_for_metrics(tensor).mean().item() |
|
|
|
|
|
self.stats["loss/dpo"].append(gather_mean(dpo_losses)) |
|
self.stats["loss/xpo"].append(gather_mean(xpo_losses)) |
|
|
|
|
|
if self.reward_model is not None: |
|
self.stats["objective/model_scores"].append(gather_mean(model_scores)) |
|
self.stats["objective/ref_scores"].append(gather_mean(ref_scores)) |
|
self.stats["objective/scores_margin"].append(gather_mean(model_scores - ref_scores)) |
|
|
|
|
|
model_logprobs_model_data_sum = model_logprobs_model_data.sum(1) |
|
model_logprobs_ref_data_sum = model_logprobs_ref_data.sum(1) |
|
ref_logprobs_ref_data_sum = ref_logprobs_ref_data.sum(1) |
|
ref_logprobs_model_data_sum = ref_logprobs_model_data.sum(1) |
|
|
|
chosen_model_logprobs = torch.where(chosen_mask, model_logprobs_model_data_sum, model_logprobs_ref_data_sum) |
|
chosen_ref_logprobs = torch.where(chosen_mask, ref_logprobs_model_data_sum, ref_logprobs_ref_data_sum) |
|
chosen_log_ratios = chosen_model_logprobs - chosen_ref_logprobs |
|
|
|
rejected_model_logprobs = torch.where(~chosen_mask, model_logprobs_model_data_sum, model_logprobs_ref_data_sum) |
|
rejected_ref_logprobs = torch.where(~chosen_mask, ref_logprobs_model_data_sum, ref_logprobs_ref_data_sum) |
|
rejected_log_ratios = rejected_model_logprobs - rejected_ref_logprobs |
|
|
|
self.stats["logps/chosen"].append(gather_mean(chosen_model_logprobs.mean() + chosen_ref_logprobs.mean())) |
|
self.stats["logps/rejected"].append(gather_mean(rejected_model_logprobs.mean() + rejected_ref_logprobs.mean())) |
|
|
|
|
|
|
|
chosen_rewards = chosen_log_ratios * self.beta |
|
rejected_rewards = rejected_log_ratios * self.beta |
|
self.stats["rewards/chosen"].append(gather_mean(chosen_rewards.mean())) |
|
self.stats["rewards/rejected"].append(gather_mean(rejected_rewards.mean())) |
|
|
|
|
|
kl_model_data = model_logprobs_model_data - ref_logprobs_model_data |
|
kl_ref_data = model_logprobs_ref_data - ref_logprobs_ref_data |
|
mean_kl = (kl_model_data.sum(1) + kl_ref_data.sum(1)).mean() / 2 |
|
self.stats["objective/kl"].append(gather_mean(mean_kl)) |
|
|
|
|
|
entropy_model_data = -model_logprobs_model_data.sum(1) |
|
entropy_ref_data = -model_logprobs_ref_data.sum(1) |
|
mean_entropy = (entropy_model_data.mean() + entropy_ref_data.mean()) / 2 |
|
self.stats["objective/entropy"].append(gather_mean(mean_entropy)) |
|
|
|
|
|
margin = chosen_rewards - rejected_rewards |
|
self.stats["rewards/margins"].append(gather_mean(margin.mean())) |
|
|
|
|
|
accuracy = (margin > 0).float() |
|
self.stats["rewards/accuracies"].append(gather_mean(accuracy.mean())) |
|
|
|
|
|
model_eos = (model_data["input_ids"][:, context_length:] == self.processing_class.eos_token_id).any(dim=1) |
|
ref_eos = (ref_data["input_ids"][:, context_length:] == self.processing_class.eos_token_id).any(dim=1) |
|
self.stats["val/model_contain_eos_token"].append(gather_mean(model_eos.float())) |
|
self.stats["val/ref_contain_eos_token"].append(gather_mean(ref_eos.float())) |
|
|
|
|
|
self.stats["alpha"].append(self.alpha) |
|
self.stats["beta"].append(self.beta) |
|
|
|
def training_step( |
|
self, model: nn.Module, inputs: dict[str, Union[torch.Tensor, Any]], num_items_in_batch: Optional[int] = None |
|
) -> torch.Tensor: |
|
model.train() |
|
|
|
|
|
batch_size = len(next(iter(inputs.values()))) |
|
prompts = inputs["prompt"] |
|
inputs = [{k: v[i] for k, v in inputs.items()} for i in range(batch_size)] |
|
inputs = [maybe_apply_chat_template(x, self.processing_class) for x in inputs] |
|
inputs = [self.tokenize_row(x, self.model.config.is_encoder_decoder, self.processing_class) for x in inputs] |
|
inputs = self.data_collator(inputs) |
|
|
|
|
|
inputs = self._prepare_inputs(inputs) |
|
context_length = inputs["prompt_input_ids"].shape[1] |
|
prompts = { |
|
"input_ids": inputs["prompt_input_ids"], |
|
"attention_mask": inputs["prompt_attention_mask"], |
|
"raw": prompts, |
|
} |
|
del inputs |
|
|
|
|
|
model_output, ref_output = self._generate_completions(prompts, model) |
|
|
|
|
|
model_data, ref_data = self._process_completions(model_output, ref_output, prompts) |
|
|
|
|
|
if self.reward_model is not None: |
|
model_scores, ref_scores = self._compute_rewards(model_data, ref_data, context_length) |
|
chosen_mask = model_scores >= ref_scores |
|
else: |
|
model_scores, ref_scores = None, None |
|
chosen_mask = self._compute_judge(model_data, ref_data, context_length) |
|
|
|
|
|
model_logprobs_model_data, model_logprobs_ref_data, ref_logprobs_ref_data, ref_logprobs_model_data = ( |
|
self._compute_logprobs(model, model_data, ref_data, context_length) |
|
) |
|
|
|
|
|
loss, dpo_losses, xpo_losses = self._compute_losses( |
|
model_logprobs_model_data, |
|
model_logprobs_ref_data, |
|
ref_logprobs_ref_data, |
|
ref_logprobs_model_data, |
|
chosen_mask, |
|
) |
|
|
|
|
|
self._log_statistics( |
|
model_data, |
|
ref_data, |
|
model_logprobs_model_data.detach(), |
|
model_logprobs_ref_data.detach(), |
|
ref_logprobs_ref_data, |
|
ref_logprobs_model_data, |
|
chosen_mask, |
|
dpo_losses.detach(), |
|
xpo_losses.detach(), |
|
context_length, |
|
model_scores, |
|
ref_scores, |
|
) |
|
|
|
if ( |
|
self.args.torch_empty_cache_steps is not None |
|
and self.state.global_step % self.args.torch_empty_cache_steps == 0 |
|
): |
|
empty_cache() |
|
|
|
kwargs = {} |
|
|
|
if self.args.optim in [OptimizerNames.LOMO, OptimizerNames.ADALOMO]: |
|
kwargs["learning_rate"] = self._get_learning_rate() |
|
|
|
if self.args.n_gpu > 1: |
|
loss = loss.mean() |
|
|
|
if self.use_apex: |
|
with amp.scale_loss(loss, self.optimizer) as scaled_loss: |
|
scaled_loss.backward() |
|
else: |
|
self.accelerator.backward(loss, **kwargs) |
|
|
|
return loss.detach() / self.args.gradient_accumulation_steps |
|
|
|
def create_model_card( |
|
self, |
|
model_name: Optional[str] = None, |
|
dataset_name: Optional[str] = None, |
|
tags: Union[str, list[str], None] = None, |
|
): |
|
""" |
|
Creates a draft of a model card using the information available to the `Trainer`. |
|
|
|
Args: |
|
model_name (`str` or `None`, *optional*, defaults to `None`): |
|
Name of the model. |
|
dataset_name (`str` or `None`, *optional*, defaults to `None`): |
|
Name of the dataset used for training. |
|
tags (`str`, `list[str]` or `None`, *optional*, defaults to `None`): |
|
Tags to be associated with the model card. |
|
""" |
|
if not self.is_world_process_zero(): |
|
return |
|
|
|
if hasattr(self.model.config, "_name_or_path") and not os.path.isdir(self.model.config._name_or_path): |
|
base_model = self.model.config._name_or_path |
|
else: |
|
base_model = None |
|
|
|
tags = tags or [] |
|
if isinstance(tags, str): |
|
tags = [tags] |
|
|
|
if hasattr(self.model.config, "unsloth_version"): |
|
tags.append("unsloth") |
|
|
|
citation = textwrap.dedent("""\ |
|
@article{jung2024binary, |
|
title = {{Exploratory Preference Optimization: Harnessing Implicit Q*-Approximation for Sample-Efficient RLHF}}, |
|
author = {Tengyang Xie and Dylan J. Foster and Akshay Krishnamurthy and Corby Rosset and Ahmed Awadallah and Alexander Rakhlin}, |
|
year = 2024, |
|
eprint = {arXiv:2405.21046} |
|
}""") |
|
|
|
model_card = generate_model_card( |
|
base_model=base_model, |
|
model_name=model_name, |
|
hub_model_id=self.hub_model_id, |
|
dataset_name=dataset_name, |
|
tags=tags, |
|
wandb_url=wandb.run.get_url() if is_wandb_available() and wandb.run is not None else None, |
|
comet_url=get_comet_experiment_url(), |
|
trainer_name="XPO", |
|
trainer_citation=citation, |
|
paper_title="Exploratory Preference Optimization: Harnessing Implicit Q*-Approximation for Sample-Efficient RLHF", |
|
paper_id="2405.21046", |
|
) |
|
|
|
model_card.save(os.path.join(self.args.output_dir, "README.md")) |
|
class UnslothXPOTrainer(_UnslothXPOTrainer): |
|
""" |
|
|
|
Initialize XPOTrainer as a subclass of [`OnlineDPOConfig`]. |
|
|
|
Args: |
|
model (`transformers.PreTrainedModel`): |
|
The model to train, preferably an `AutoModelForCausalLM`. |
|
ref_model (`PreTrainedModelWrapper`): |
|
Hugging Face transformer model with a casual language modelling head. Used for implicit reward computation and loss. If no |
|
reference model is provided, the trainer will create a reference model with the same architecture as the model to be optimized. |
|
reward_model (`transformers.PreTrainedModel`): |
|
The reward model to score completions with, preferably an `AutoModelForSequenceClassification`. |
|
judge (`BasePairwiseJudge`): |
|
The judge to use for pairwise comparison of model completions. |
|
args (`XPOConfig`): |
|
The XPO config arguments to use for training. |
|
data_collator (`transformers.DataCollator`): |
|
The data collator to use for training. If None is specified, the default data collator (`DPODataCollatorWithPadding`) will be used |
|
which will pad the sequences to the maximum length of the sequences in the batch, given a dataset of paired sequences. |
|
train_dataset (`datasets.Dataset`): |
|
The dataset to use for training. |
|
eval_dataset (`datasets.Dataset`): |
|
The dataset to use for evaluation. |
|
processing_class (`PreTrainedTokenizerBase` or `BaseImageProcessor` or `FeatureExtractionMixin` or `ProcessorMixin`, *optional*): |
|
Processing class used to process the data. If provided, will be used to automatically process the inputs |
|
for the model, and it will be saved along the model to make it easier to rerun an interrupted training or |
|
reuse the fine-tuned model. |
|
peft_config (`dict`): |
|
The peft config to use for training. |
|
compute_metrics (`Callable[[EvalPrediction], dict]`, *optional*): |
|
The function to use to compute the metrics. Must take a `EvalPrediction` and return |
|
a dictionary string to metric values. |
|
callbacks (`list[transformers.TrainerCallback]`): |
|
The callbacks to use for training. |
|
optimizers (`tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR]`): |
|
The optimizer and scheduler to use for training. |
|
preprocess_logits_for_metrics (`Callable[[torch.Tensor, torch.Tensor], torch.Tensor]`): |
|
The function to use to preprocess the logits before computing the metrics. |
|
|
|
""" |
|
def __init__( |
|
self, |
|
model = None, |
|
ref_model = None, |
|
reward_model = None, |
|
judge = None, |
|
args = None, |
|
data_collator = None, |
|
train_dataset = None, |
|
eval_dataset = None, |
|
processing_class = None, |
|
peft_config = None, |
|
compute_metrics = None, |
|
callbacks = None, |
|
preprocess_logits_for_metrics = None, |
|
**kwargs |
|
): |
|
if args is None: args = UnslothXPOConfig() |
|
use_bf16 = getattr(args, 'bf16', False) |
|
use_fp16 = getattr(args, 'fp16', False) |
|
force_float32 = False |
|
if os.environ.get('UNSLOTH_FORCE_FLOAT32', '0') == '1': |
|
print('Unsloth: Switching to float32 training since model cannot work with float16') |
|
force_float32 = True |
|
mixed_precision_dtype = os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32') |
|
dtype = getattr(model.config, 'torch_dtype', None) |
|
if dtype is None: dtype = model.get_input_embeddings().dtype |
|
from unsloth_zoo.utils import _get_dtype |
|
dtype = _get_dtype(dtype) |
|
float16 = dtype == torch.float16 |
|
if not force_float32 and (float16 and use_bf16): raise TypeError('Unsloth: Model is in float16 precision but you want to use bfloat16 precision. Set fp16 to `True` and bf16 to `False`') |
|
if not force_float32 and (not float16 and use_fp16): raise TypeError('Unsloth: Model is in bfloat16 precision but you want to use float16 precision. Set fp16 to `False` and bf16 to `True`') |
|
if force_float32: |
|
args.fp16 = False |
|
args.bf16 = False |
|
os.environ['ACCELERATE_MIXED_PRECISION'] = 'no' |
|
elif (not use_bf16 and not use_fp16) and mixed_precision_dtype == 'float32': |
|
args.fp16 = float16 |
|
args.bf16 = not float16 |
|
os.environ['ACCELERATE_MIXED_PRECISION'] = 'fp16' if float16 else 'bf16' |
|
if getattr(args, 'eval_dataset', None) is not None and getattr(args, 'eval_strategy', 'no') == 'no': |
|
args.eval_strategy = 'steps' |
|
if getattr(args, 'eval_steps', None) is None: args.eval_steps = 0.1 |
|
ga_steps = getattr(args, 'gradient_accumulation_steps', None) |
|
if ga_steps is not None and ga_steps > 1: |
|
from transformers import __version__ as transformers_version |
|
if Version(transformers_version) <= Version('4.45.2'): |
|
print('**** Unsloth: Please use our fixed gradient_accumulation_steps by updating transformers, TRL and Unsloth!\n' |
|
'`pip install --upgrade --no-cache-dir --force-reinstall --no-deps unsloth transformers trl unsloth_zoo`') |
|
if getattr(args, 'eval_strategy', 'no') != 'no': |
|
eval_bsz = getattr(args, 'per_device_eval_batch_size', 8) |
|
if eval_bsz == 8 and args.per_device_train_batch_size < eval_bsz: args.per_device_eval_batch_size = args.per_device_train_batch_size |
|
if getattr(args, 'eval_accumulation_steps', None) is None and ga_steps is not None: args.eval_accumulation_steps = ga_steps |
|
fp16_full_eval = getattr(args, 'fp16_full_eval', False) |
|
bf16_full_eval = getattr(args, 'bf16_full_eval', False) |
|
if args.fp16 and bf16_full_eval: args.bf16_full_eval = False; args.fp16_full_eval = True |
|
if args.bf16 and fp16_full_eval: args.bf16_full_eval = True; args.fp16_full_eval = False |
|
if force_float32: |
|
args.bf16_full_eval = False |
|
args.fp16_full_eval = False |
|
elif os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32') == 'bfloat16': |
|
args.bf16_full_eval = True |
|
args.fp16_full_eval = False |
|
elif not bf16_full_eval and not fp16_full_eval: |
|
args.bf16_full_eval = args.bf16 |
|
args.fp16_full_eval = args.fp16 |
|
_output_logits = False |
|
if locals().get('compute_metrics', None) is not None: _output_logits = True |
|
if locals().get('preprocess_logits_for_metrics', None) is not None: _output_logits = True |
|
if _output_logits: |
|
os.environ['UNSLOTH_RETURN_LOGITS'] = '1' |
|
if 'max_seq_length' not in locals() and not hasattr(args, 'max_seq_length'): |
|
pass |
|
else: |
|
model_max_seq_length = getattr(model, 'max_seq_length', None) |
|
args_max_seq_length = getattr(args, 'max_seq_length', None) |
|
if args_max_seq_length is None and model_max_seq_length is not None: |
|
max_seq_length = model.max_seq_length |
|
if hasattr(args, 'max_seq_length'): args.max_seq_length = max_seq_length |
|
if model is not None and hasattr(model, 'for_training'): |
|
model.for_training() |
|
if 'tokenizer' in locals() and hasattr(tokenizer, 'padding_side'): tokenizer.padding_side = 'right' |
|
if 'processing_class' in locals(): |
|
if hasattr(processing_class, 'padding_side'): processing_class.padding_side = 'right' |
|
if hasattr(processing_class, 'tokenizer') and hasattr(processing_class.tokenizer, 'padding_side'): processing_class.tokenizer.padding_side = 'right' |
|
__tokenizer = processing_class if 'processing_class' in locals() else tokenizer |
|
from unsloth_zoo.vision_utils import UnslothVisionDataCollator |
|
if not isinstance(data_collator, UnslothVisionDataCollator): |
|
if isinstance(data_collator, DataCollatorForSeq2Seq) and 'labels' not in train_dataset.column_names: |
|
data_collator = DataCollatorForLanguageModeling(__tokenizer, mlm = False) |
|
elif isinstance(data_collator, DataCollatorForLanguageModeling) and 'labels' in train_dataset.column_names: |
|
data_collator = DataCollatorForSeq2Seq(__tokenizer) |
|
else: |
|
if hasattr(args, 'remove_unused_columns'): args.remove_unused_columns = False |
|
if hasattr(args, 'dataset_text_field'): args.dataset_text_field = '' |
|
if hasattr(args, 'dataset_kwargs'): args.dataset_kwargs = {'skip_prepare_dataset': True} |
|
if not isinstance(data_collator, UnslothVisionDataCollator): |
|
if not hasattr(__tokenizer, 'pad') and hasattr(__tokenizer, 'tokenizer'): |
|
if isinstance(data_collator, DataCollatorForSeq2Seq): |
|
data_collator = DataCollatorForSeq2Seq(__tokenizer.tokenizer) |
|
else: |
|
data_collator = DataCollatorForLanguageModeling(__tokenizer.tokenizer, mlm = False) |
|
other_metrics = [] |
|
|
|
from unsloth_zoo.logging_utils import PatchRLStatistics |
|
PatchRLStatistics('xpo_trainer', other_metrics) |
|
|
|
super().__init__( |
|
model = model, |
|
ref_model = ref_model, |
|
reward_model = reward_model, |
|
judge = judge, |
|
args = args, |
|
data_collator = data_collator, |
|
train_dataset = train_dataset, |
|
eval_dataset = eval_dataset, |
|
processing_class = processing_class, |
|
peft_config = peft_config, |
|
compute_metrics = compute_metrics, |
|
callbacks = callbacks, |
|
preprocess_logits_for_metrics = preprocess_logits_for_metrics,**kwargs) |
|
if hasattr(self, 'neftune_hook_handle'): |
|
self.neftune_hook_handle.remove() |
|
if hasattr(self, 'neftune_hook_handle'): del self.neftune_hook_handle |
|
if getattr(args, 'neftune_noise_alpha', None) is not None: |
|
model.get_input_embeddings().neftune_noise_alpha = self.neftune_noise_alpha |
|
pass |
|
|
|
pass |
|
|