File size: 1,324 Bytes
ce61b0c 4617f6b ce61b0c 05a096d ce61b0c ffe2ea6 ce61b0c ff62492 4617f6b 8fbb96b b05787d ce61b0c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
---
language:
- ko
tags:
- generated_from_keras_callback
model-index:
- name: t5-large-korean-P2G
results: []
---
# t5-large-korean-P2G
์ด ๋ชจ๋ธ์ lcw99 / t5-large-korean-text-summary์ ๊ตญ๋ฆฝ ๊ตญ์ด์ ์ ๋ฌธ ๋ง๋ญ์น 50๋ง๊ฐ์ ๋ฌธ์ฅ์ 2021์ g2pK๋ก ํ๋ จ์์ผ G2P๋ ๋ฐ์ดํฐ๋ฅผ ์๋ณธ์ผ๋ก ๋๋ฆฝ๋๋ค.<br>
git : https://github.com/taemin6697<br>
## Usage
```python
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
model_dir = "kfkas/t5-large-korean-P2G"
tokenizer = AutoTokenizer.from_pretrained(model_dir)
model = AutoModelForSeq2SeqLM.from_pretrained(model_dir)
text = "์๊ท์๊ตญ ์ธ์ฐ๋ ํ์๊ดยทํ๋
๋นจ์ฉ ์ค์ฌ์ง ๋ ๊ป"
inputs = tokenizer.encode(text,return_tensors="pt")
output = model.generate(inputs)
decoded_output = tokenizer.batch(output[0], skip_special_tokens=True)
print(decoded_output)#์์ ์๊ตญ ์ฌ์ฐ๋ ํ์๊ดยทํ๋ ฅ ๋ฐ์ ์ค์ฌ์ง ๋ ๊ฒ
```
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: None
- training_precision: float16
### Training results
### Framework versions
- Transformers 4.22.1
- TensorFlow 2.10.0
- Datasets 2.5.1
- Tokenizers 0.12.1 |