File size: 1,324 Bytes
ce61b0c
 
 
 
 
 
 
 
 
 
4617f6b
ce61b0c
 
05a096d
 
ce61b0c
 
 
 
ffe2ea6
ce61b0c
 
 
ff62492
4617f6b
 
8fbb96b
b05787d
ce61b0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
---
language:
  - ko
tags:
- generated_from_keras_callback
model-index:
- name: t5-large-korean-P2G
  results: []
---

# t5-large-korean-P2G


์ด ๋ชจ๋ธ์€ lcw99 / t5-large-korean-text-summary์„ ๊ตญ๋ฆฝ ๊ตญ์–ด์› ์‹ ๋ฌธ ๋ง๋ญ‰์น˜ 50๋งŒ๊ฐœ์˜ ๋ฌธ์žฅ์„ 2021์„ g2pK๋กœ ํ›ˆ๋ จ์‹œ์ผœ G2P๋œ ๋ฐ์ดํ„ฐ๋ฅผ ์›๋ณธ์œผ๋กœ ๋Œ๋ฆฝ๋‹ˆ๋‹ค.<br>
git : https://github.com/taemin6697<br>

## Usage
```python
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
model_dir = "kfkas/t5-large-korean-P2G"
tokenizer = AutoTokenizer.from_pretrained(model_dir)
model = AutoModelForSeq2SeqLM.from_pretrained(model_dir)

text = "์„œ๊ทœ์™•๊ตญ ์‹ธ์šฐ๋”” ํƒœ์–‘๊ด‘ยทํ’๋… ๋นจ์ฉ ์ค‘์‹ฌ์ง€ ๋  ๊ปƒ"
inputs = tokenizer.encode(text,return_tensors="pt")
output = model.generate(inputs)
decoded_output = tokenizer.batch(output[0], skip_special_tokens=True)
print(decoded_output)#์„์œ ์™•๊ตญ ์‚ฌ์šฐ๋”” ํƒœ์–‘๊ด‘ยทํ’๋ ฅ ๋ฐœ์ „ ์ค‘์‹ฌ์ง€ ๋  ๊ฒƒ
```


## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: None
- training_precision: float16
### Training results
### Framework versions
- Transformers 4.22.1
- TensorFlow 2.10.0
- Datasets 2.5.1
- Tokenizers 0.12.1